





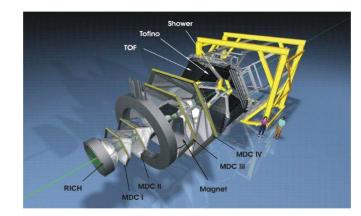
UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO



INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIE. This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

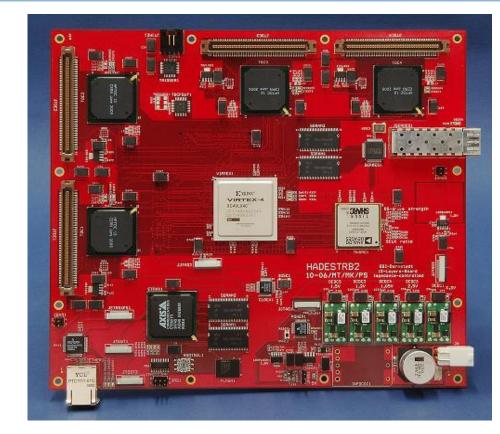
# TRB3 - FPGA BASED, UNIVERSAL READOUT BOARD FOR PHYSICS EXPERIMENTS

Grzegorz Korcyl – Jagiellonian University


### Plan

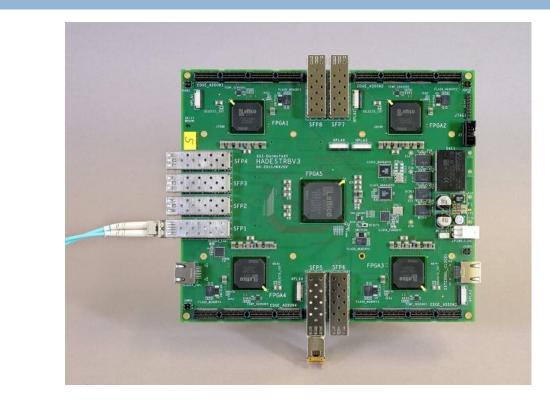
- 1. Predecessor: TRBv2
- 2. TRBv3 key features
- 3. TDC in FPGA implementation
- 4. GbE connectivity
- 5. Addon boards concept
- 6. Recent projects
- 7. Summary

## Predecessor: TRBv2


### Main user: HADES experiment at GSI, Darmstadt

- Successfully used in many beatimes
- Time measurement HPTDC
  - 128 channels 30 ps resolution
  - 32 channels 13 ps resolution
- Motherboard
  - Supports many Addon boards
- Slow control
  - ETRAX processor
- Used in many different projects:
  - Detectors prototypes
  - PET projects

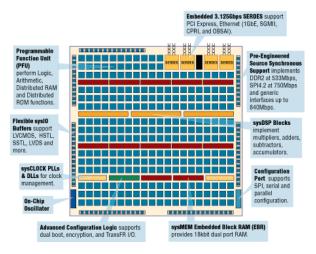



# Predecessor: TRBv2

- □ 4x HPTDC
  - 32 channels each
  - Up to 13ps resolution
- 1x Xilinx Virtex4 FPGA
  - TDC readout
- □ 1 x ETRAX
  - Interface for slow control
- □ 1x 2,5Gbps Optical link
  - Data output
  - Connection to the larger system
- 1x Sharc DSP
- □ 1x RJ45
  - Interface to network
- □ 1x Addon connector
  - Extension board slot
- □ 1 x Reference time input

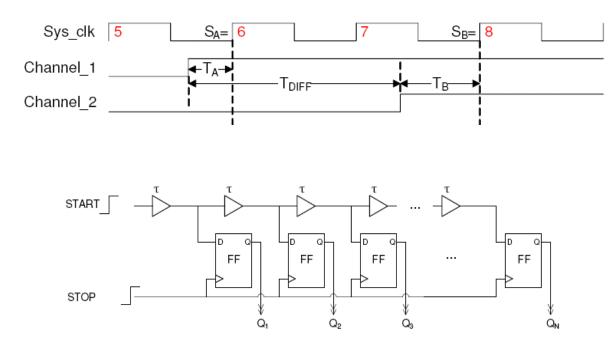


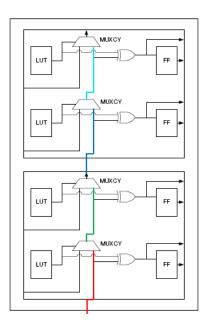
# TRBv3 – Key features


- □ 5x Lattice ECP3 150 FPGAs
  - 4 edge devices
  - 1 central
  - Flash ROMs for each
- 8x 3.2GBps optical links
- 4x 208pin QMS connectors
  Small Addons
- 1x 106pin connectorLarge Addon
- Hardware trigger input



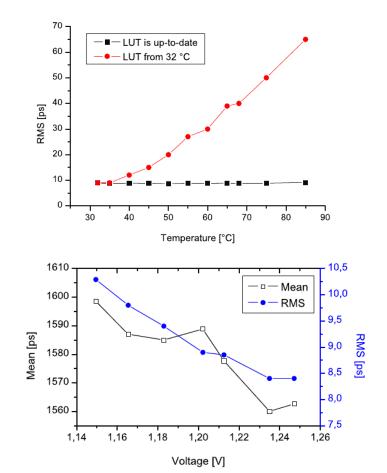
# TDC in FPGA implementation


- Field Programmable Gate Arrays
  - Reconfigurable programmable logic devices
  - Parallel processing
  - High clock frequency
  - Memory blocks
  - DSP blocks
  - SERDES units
  - Hard/soft core CPU





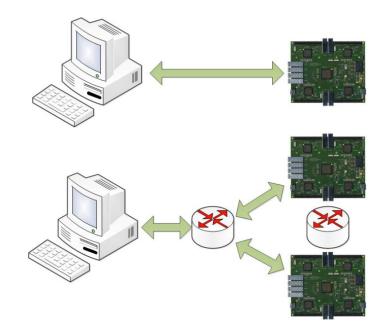

# **TDC** in FPGA implementation


- No additional devices
- Precise time measurement (< 14ps resolution)</p>
- High channel density (up to 64 channels per FPGA)
- 40MHz hit rate per channel
- Configurable by the end user (resolution in trade of channel number)





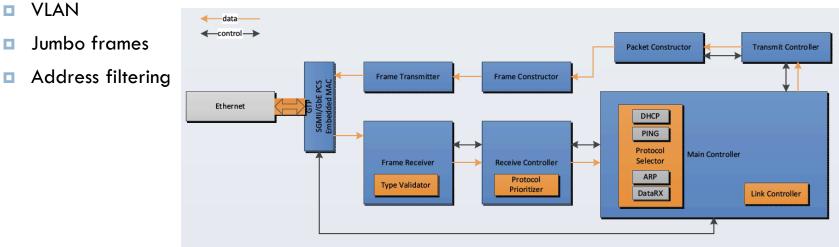
# **TDC** in FPGA implementation


- Arrays/block boundaries "Ultra Wide Bins"
- Sensitive to temperature and voltage variations
- Values vary between 3 ps 100 ps
- PAR constraints very important



#### Calibration needed

## GbE connectivity


- TRBv3 designed to be used as:
  - Stand-alone measurement device
  - Part of a complex system
- Different communication solutions:
  - Based on 3.2GBps optical links
  - Links configured by groups of 4
  - Managed by central FPGA
  - Transmission of collected data
  - Control of the board or of the whole system

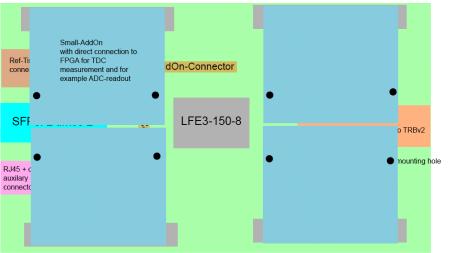


## GbE connectivity

Board management and data transmission

- Gigabit Ethernet link
- Full Duplex
- Up to 118 MBps
- Basic protocols (IP, UDP, ARP, DHCP, ICMP, Custom protocols)
- Autonegotiation + network address acquisition




Giagbit Ethernet with higher level protocols FPGA implementation

### GbE connectivity

- Replacement for ETRAX
  - Slow control
- Network hub
  - Gathering of data from endpoints using custom protocols
  - Transmission to event builders via GbE
- Network traffic generator
  - Generation of personalized traffic in variety of protocols

# Addon boards concept

- □ 4x 208 pin connectors
- □ 1x 106 pin connector
- Features:
  - Data transfer
  - 3,3V and 6V power supply
- Addon boards:
  - Input signal converters
  - Front-end modules
  - Additional measurement devices
  - Input / output extensions



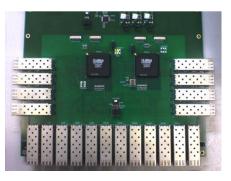
TRBv3 with small AddOns to cope with many applications.

- Applications:
  - Measurement
  - Trigger module
  - Network hub

### Addon boards concept

### Small addons:

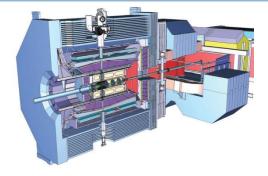
- HUB module
  - Additional 6x 3.2GBps optical links
- Central Trigger System module
  - Many input and output LVDS ports
- ADC module
  - Board prototype, basic values: 2 channels, 10MSps, 6bit
  - Uses TDC on FPGA


## Addon boards concept

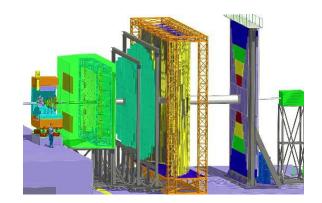
Large addons (used already with TRB2):

- Central Trigger System module
- HUB module
  - 20x 3.2GBps optical links
- ADC module
  - 12x 8 channel, 40MSps, 10b ADC
- NINO module
  - 128 channels TOT









## Recent projects

- Replacement of TRB2 in HADES (GSI)
- PANDA (GSI) detectors prototypes:
  - Disc and Barell DIRC
  - Straw Tube Tracker
- CBM (GSI) detector prototypes:

  - Calorimeter
- Positron Emission Tomography
  - TOF project in Cracow
  - RPC project in Coimbra
- Many other









Versatile solution for different kind of measurements

- Flexible integration with existing DAQ systems thanks to communication features
- Board produced and under intensive testing
- Already planned to be used in many upcoming experiments