# **Dipole model analysis of** $F_2^{c\overline{c}}$ **and PDFs from the new HERA data**

Agnieszka Łuszczak

Krakow University of Technology, Poland

in collaboration with Henri Kowalski and Sasha Glazov

MESON2012, May 31, 2012

Motivation : Investigation of the gluon density with dipole model, as an alternative to the PDF approach. Prefered choice : BGK dipole model, which has very similar physics interpretation as PDFs, i.e. DGLAP evolution in the *kt* factorization scheme (in contrast to the collinear factorization for PDFs).

- Dipole model approach
- GBW and BGK parametrization of dipole cross section
- Results of the fits
  - Fits to  $F_2^{c\overline{c}}$  function
  - Fits to  $\sigma_r$  with different valence quarks contributions
  - Fits to  $\sigma_r$  from HERAFitter package
- Conclusions

Dipole picture of DIS at small x in the proton rest frame



*r* - dipole size

z - longitudinal momentum fraction of the quark/antiquark

Factorization: dipole formation + dipole interaction

$$\sigma^{\gamma p} = \frac{4\pi^2 \alpha_{em}}{Q^2} F_2 = \sum_f \int d^2 r \int_0^1 dz \, |\Psi^{\gamma}(r, z, Q^2, m_f)|^2 \, \hat{\sigma}(r, x)$$

Dipole-proton interaction
$$\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp\{-\hat{r}^2\}\right) \qquad \hat{r} = r/R_s(x)$$

### **Dipole cross section with GBW parametrization**

• GBW (Golec-Biernat, Wüsthoff) parametrization  $\hat{\sigma}(r,x) = \sigma_0 \left(1 - \exp(-r^2/R_s^2)\right), \qquad R_s^2 = 4 \cdot \left(x/x_0\right)^{\lambda} \, \mathrm{GeV}^2$ 

The dipole scattering amplitude in such a case reads

$$\hat{N}(\mathbf{r}, \mathbf{b}, x) = \theta(b_0 - b) \left(1 - \exp(-r^2/R_s^2)\right)$$

where

$$\hat{\sigma}(r,x) = 2 \int d^2 b \, \hat{N}(\mathbf{r},\mathbf{b},x)$$

Parameters  $b_0$ ,  $x_0$  and  $\lambda$  from fits of  $\hat{N}$  to  $F_2$  data

 $\lambda = 0.288$   $x_0 = 4 \cdot 10^{-5}$   $2\pi b_0^2 = \sigma_0 = 29 \text{ mb}$ 

## **Dipole cross section with BGK parametrization**

BGK (Bartels-Golec-Kowalski) parametrization

 $\hat{\sigma}(r,x) = \sigma_0 \left\{ 1 - \exp\left[-\pi^2 r^2 \alpha_s(\mu^2) x g(x,\mu^2) / (3\sigma_0)\right] \right\}$ 

- $\square$   $R_s^2$  is replacing by a gluon density with explicit DGLAP evolution
- $\mu^2 = C/r^2 + \mu_0^2$  is the scale of the gluon density
- gluon density is evolved according to the (LO) DGLAP equation

$$xg(x,\mu_0^2) = A_g x^{-\lambda_g} (1-x)^{C_g}$$

**J** The  $q\overline{q}$  components from T and L polarised photons are given by

$$\begin{split} F_T^{(q\overline{q})} &= \frac{3Q^4}{64\pi^4} \sum_f e_f^2 \int_{z_f}^{1/2} dz \, z(1-z) \\ &\times \quad \left\{ \left[ z^2 + (1-z)^2 \right] Q_f^2 \, \phi_1^2 + \, m_f^2 \, \phi_0^2 \right\} \\ F_L^{(q\overline{q})} &= \frac{3Q^6}{16\pi^4} \, \sum_f e_f^2 \int_{z_f}^{1/2} dz \, z^3 (1-z)^3 \, \phi_0^2 \end{split}$$

The functions  $\phi_i$  take the following form for i = 0, 1

$$\phi_i = \int_0^\infty dr r K_i(Q_f r) J_i(k_f r) \,\hat{\sigma}(r, x)$$

$$x = \frac{Q^2}{Q^2 + W^2}$$

## **Charm structure functions in dipole models**

Standard dipole model formula with  $m_c = 1.4 \text{ GeV}$  and  $e_c = 2/3$ 

$$F_T^{(c\overline{c})} = \frac{3Q^4 e_c^2}{64\pi^4} \int_{z_c}^{1/2} dz \, z(1-z)$$
$$\times \quad \left\{ \left[ z^2 + (1-z)^2 \right] Q_c^2 \, \phi_1^2 + m_c^2 \, \phi_0^2 \right\}$$

with 
$$z_c = (1 - \sqrt{1 - 4m_c^2/M^2})/2$$

Solution For the heavy quark contributions we modyfied x in  $\hat{\sigma}(r, x)$ 

$$x \to x(1 + \frac{4m_f^2}{Q^2}) = \frac{Q^2 + 4m_f^2}{Q^2 + W^2}$$

### Dipole model BGK fit with charm quark contribution

1.1 Pure dipole fit for  $\sigma_r$  with  $m_{ch} = 1.3$  GeV,  $m_{ud} = 0.03$  GeV, E = 460, 575 and 920 GeV.

| No | Data        | $Q^2$          | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|----------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 0.25$ | 483     | 754.81   | 3.089 | -0.059      | 0.959   | 1.56              |
| 2  | H1 and ZEUS | $Q^2 \ge 1.5$  | 402     | 402.27   | 2.276 | 0.062       | 1.719   | 1.0               |
| 3  | H1 and ZEUS | $Q^2 \ge 3.5$  | 356     | 343.02   | 2.159 | 0.085       | 2.016   | 0.96              |
| 4  | H1 and ZEUS | $Q^2 \ge 8.5$  | 287     | 229.79   | 2.147 | 0.085       | 1.99    | 0.80              |

1.2 Pure dipole fit for  $\sigma_r$  with  $m_{ch} = 1.4 \text{ GeV}$ ,  $m_{ud} = 0.03 \text{ GeV}$ , E = 460, 575and 920 GeV.

| No | Data        | $Q^2$          | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|----------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 0.25$ | 483     | 769.43   | 3.130 | -0.059      | 0.954   | 1.59              |
| 2  | H1 and ZEUS | $Q^2 \ge 1.5$  | 402     | 401.36   | 2.281 | 0.065       | 1.723   | 0.99              |
| 3  | H1 and ZEUS | $Q^2 \ge 3.5$  | 356     | 344.27   | 2.175 | 0.086       | 1.994   | 0.97              |
| 4  | H1 and ZEUS | $Q^2 \ge 8.5$  | 287     | 229.76   | 2.167 | 0.084       | 1.944   | 0.80              |

### **Results of the Fits**

# **Dipole model BGK fit for** $F_2^{c\overline{c}}$

1.7 Charm fit for  $F_2^{c\overline{c}}$  function,  $m_{ch} = 1.4 \text{ GeV}, m_{ud} = 0.03 \text{ GeV}.$ 

| No | Data        | $Q^2$         | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|---------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 2.5$ | 41      | 32.36    | 4.917 | -0.349      | 0.415   | 0.89              |

1.8 Charm fit for  $F_2^{c\overline{c}}$  function,  $m_{ch} = 1.3 \text{ GeV}, m_{ud} = 0.03 \text{ GeV}.$ 

| No | Data        | $Q^2$         | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|---------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 2.5$ | 41      | 31.17    | 5.117 | -0.231      | 0.221   | 0.93              |

# **Predictions for** $F_2^{c\overline{c}}$ from fits



**ZEUS and H1 Data** 

### **Results of the Fits**

## Dipole model BGK fit with different valence quarks contributions

1.4 Dipole fit with HERAPDF valence - quark contribution added to  $\sigma_r$ ,  $m_{ch} = 1.4 \text{ GeV}, m_{ud} = 0.03 \text{ GeV}, E = 820, 920 \text{ GeV}.$ 

| No | Data        | $Q^2$         | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|---------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 3.5$ | 177     | 229.93   | 1.446 | 0.109       | 1.341   | 1.29              |
| 2  | H1 and ZEUS | $Q^2 \ge 8.5$ | 138     | 155.54   | 1.469 | 0.101       | 1.264   | 1.12              |

1.6 Dipole fit with MSTW valence - quark contribution added to  $\sigma_r$ ,  $m_{ch} = 1.4 \text{ GeV}, m_{ud} = 0.03 \text{ GeV}, E = 820, 920 \text{ GeV}.$ 

| No | Data        | $Q^2$         | Npoints | $\chi^2$ | $A_g$ | $\lambda_g$ | $\mu_0$ | $\chi^2/N points$ |
|----|-------------|---------------|---------|----------|-------|-------------|---------|-------------------|
| 1  | H1 and ZEUS | $Q^2 \ge 3.5$ | 177     | 281.06   | 2.602 | -0.050      | 0.785   | 1.58              |
| 2  | H1 and ZEUS | $Q^2 \ge 8.5$ | 138     | 208.48   | 2.599 | -0.050      | 0.785   | 1.51              |

#### Dipole model BGK fit without valence quarks

1.1 Dipole model BGK fit without valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p) and H1ZEUS-NC-(e-p) data in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$ and  $x \le 0.01$ .

| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | cBGK  | eBGK  | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|-------|-------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 40.43      | 1.596 | -0.249      | 1.529 | 0.401 | 197 | 214.46   | 1.10        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 40.43      | 1.596 | -0.249      | 1.529 | 0.401 | 197 | 214.46   | 1.10        |
| 3  | $Q^2 \ge 8.5$ | RT        | 32.48      | 1.691 | -0.256      | 1.463 | 0.155 | 156 | 125.10   | 0.80        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 32.48      | 1.691 | -0.256      | 1.463 | 0.155 | 156 | 125.10   | 0.80        |

1.2 Dipole model BGK fit without valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p) and H1ZEUS-NC-(e-p) and H1-LowEp-460-575 data in the range  $Q^2 \geq 3.5$  and  $Q^2 \geq 8.5$  and  $x \leq 0.01$ .

| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | cBGK  | eBGK   | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|-------|--------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 38.67      | 1.593 | -0.254      | 1.336 | 0.349  | 318 | 365.19   | 1.15        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 38.67      | 1.593 | -0.254      | 1.336 | 0.349  | 318 | 365.19   | 1.15        |
| 3  | $Q^2 \ge 8.5$ | RT        | 31.47      | 1.74  | -0.255      | 1.556 | -0.542 | 249 | 224.48   | 0.90        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 31.47      | 1.74  | -0.255      | 1.556 | -0.542 | 249 | 224.48   | 0.90        |

## HERAPDF fit with valence quarks

1.3 HERAPDF fit with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p), H1ZEUS-NC-(e-p) data in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$  and  $x \le 1.0$ .

| No | $Q^2$         | HF Scheme | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 511 | 518.06   | 1.01        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 511 | 501.67   | 0.98        |
| 3  | $Q^2 \ge 8.5$ | RT        | 469 | 414.70   | 0.88        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 469 | 416.66   | 0.88        |

1.4 HERAPDF fit with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p), H1ZEUS-NC-(e-p) data in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$  and  $x \le 0.01$ .

| No | $Q^2$         | HF Scheme | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 197 | 220.64   | 1.12        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 197 | 206.85   | 1.05        |
| 3  | $Q^2 \ge 8.5$ | RT        | 156 | 131.04   | 0.84        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 156 | 131.04   | 0.84        |

### HERAPDF fit with valence quarks

1.5 HERAPDF fit with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p), H1ZEUS-NC-(e-p), H1ZEUS-CC-(e-p), H1ZEUS-CC-(e+p) data in the range  $Q^2 \geq 3.5$  and  $Q^2 \geq 8.5$  and  $x \leq 1.0$ .

| No | $Q^2$         | HF Scheme | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 579 | 575.08   | 0.99        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 579 | 560.01   | 0.97        |
| 3  | $Q^2 \ge 8.5$ | RT        | 537 | 468.34   | 0.87        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 537 | 474.78   | 0.88        |

1.6 Parameters are taken from fit nb.(1.5) in all region of x. Results with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p), H1ZEUS-NC-(e-p), H1ZEUS-CC-(e+p) data in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$  and  $x \le 0.01$ .

| No | $Q^2$         | HF Scheme | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 256 | 270.75   | 1.06        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 256 | 327.58   | 1.28        |
| 3  | $Q^2 \ge 8.5$ | RT        | 217 | 193.31   | 0.89        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 217 | 200.08   | 0.92        |

#### HERAPDF fit with valence quarks

1.7 HERAPDF fit with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p), H1ZEUS-NC-(e-p), H1ZEUS-CC-(e-p), H1ZEUS-CC-(e+p) data and H1-LowEp-460-575 data in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$  and  $x \le 1.0$ .

| No | $Q^2$         | HF Scheme | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 703 | 749.92   | 1.07        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 703 | 704.44   | 1.00        |
| 3  | $Q^2 \ge 8.5$ | RT        | 631 | 574.62   | 0.91        |
| 4  | $Q^2 \ge 8.5$ | ACOT Full | 631 | 567.90   | 0.90        |

### Dipole model BGK fit with valence quarks

1.8 Dipole model BGK fit with valence quarks for  $\sigma_r$  for H1ZEUS-NC-(e+p) in the range  $Q^2 \ge 3.5$  and  $Q^2 \ge 8.5$  and  $x \le 0.01$ .

| No | $Q^2$         | HF Scheme | $\sigma_0$ | $A_g$ | $\lambda_g$ | cBGK  | eBGK  | Np  | $\chi^2$ | $\chi^2/Np$ |
|----|---------------|-----------|------------|-------|-------------|-------|-------|-----|----------|-------------|
| 1  | $Q^2 \ge 3.5$ | RT        | 37.401     | 3.345 | 0.030       | 28.60 | 31.68 | 171 | 232.53   | 1.36        |
| 2  | $Q^2 \ge 3.5$ | ACOT Full | 37.49      | 3.393 | 0.042       | 32.65 | 36.46 | 171 | 233.82   | 1.37        |

# **Comparison with HERA data**

NC cross section HERA-I H1-ZEUS combined e+p.

- output3.5RT-3f

| 1.4<br>1.2<br>0.8                                                                              | Q <sup>2</sup> = 3.5 GeV <sup>2</sup>                           | $Q^2 = 4.5 \text{ GeV}^2$                         | $Q^2 = 6.5 \text{ GeV}^2$                                   | Q <sup>2</sup> = 8.5 GeV <sup>2</sup>              | $Q^2 = 10.0 \text{ GeV}^2$            | Q <sup>2</sup> = 12 GeV <sup>2</sup>      |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------------------------------|-------------------------------------------|
| 0.4                                                                                            | $\chi^2$ / npts = 33.8 / 13                                     | $\chi^2$ / npts = 23.5 / 12                       | $\chi^2$ / npts = 20.6 / 14                                 | $\chi^2$ / npts = 11.3 / 12                        | χ² / npts = 7.8 / 8                   | $\chi^2$ / npts = 4.6 / 11                |
| 1.4<br>1.2<br>1.2<br>1<br>1.2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | $I^{\text{Tr}}_{\text{r}}$ Q <sup>2</sup> = 15 GeV <sup>2</sup> | <sup>E</sup> Q <sup>2</sup> = 18 GeV <sup>2</sup> | $\mathbf{L}_{\mathbf{T}} \mathbf{Q}^2 = 22  \mathrm{GeV}^2$ | $\mathbf{P}_{\mathbf{Q}^2} = 27  \mathrm{GeV}^2$   | $\mathbf{Q}^2 = 35  \mathrm{GeV}^2$   | ₹<br>Q <sup>2</sup> = 45 GeV <sup>2</sup> |
| 0.6                                                                                            | χ² / npts = 16.0 / 11                                           | χ² / npts = 3.8 / 10                              | χ² / npts = 7.4 / 7                                         | χ² / npts = 5.1 / 11                               | χ² / npts = 11.2 / 8                  | χ² / npts = 7.9 / 8                       |
| 1.4<br>1.2<br>1.2<br>0.8                                                                       | $Q^2 = 60 \text{ GeV}^2$                                        | $Q^{2} = 70 \text{ GeV}^{2}$                      | $I_{Q^2} = 90 \text{ GeV}^2$                                | <sup>I</sup> Q <sup>2</sup> = 120 GeV <sup>2</sup> | Q <sup>2</sup> = 150 GeV <sup>2</sup> | Q <sup>2</sup> = 200 GeV <sup>2</sup>     |
| 0.4                                                                                            | $\chi^2$ / npts = 9.7 / 6                                       | χ² / npts = 10.7 / 5                              | $\chi^2$ / npts = 12.1 / 6                                  | $\chi^2$ / npts = 1.5 / 7                          | $\chi^2$ / npts = 4.2 / 5             | $\chi^2$ / npts = 7.3 / 6                 |
| 1.4<br>1.2<br>1.2<br>0.8                                                                       | Q <sup>2</sup> = 250 GeV <sup>2</sup><br>■                      | Q <sup>2</sup> = 300 GeV <sup>2</sup><br>⊒        | Q <sup>2</sup> = 400 GeV <sup>2</sup><br>±                  | Q² = 500 GeV²<br>⊈                                 | Q² = 650 GeV²<br>₤                    |                                           |
| 0.4                                                                                            | $\chi^{2}$ / npts = 5.3 / 4                                     | $\chi^2$ / npts = 1.3 / 5                         | χ² / npts = 2.6 / 3                                         | χ² / npts = 1.0 / 3                                | χ² / npts = 0.8 / 2                   |                                           |

## **Summary**

- BGK dipole model describe reasonable well the recent data from HERA for  $\sigma_r$  and  $F_2^{c\overline{c}}$  function derived from  $D^*$  mesons.
- The treatment of the effects related to the charm quark contribution, is an important issue in the determination of parton distribution functions (PDFs).
- The valence quarks contributions in the region of small x < 0.01 needs refinement.
- Work in progress on BGK dipole model with valence quarks.