Charm measurements at LH	С
--------------------------	---

Reuslts vs. experimental data

pen charm via Double Parton Scattering 00000000

Open charm meson production at LHC

Rafał Maciuła

Institute of Nuclear Physics (PAN), Kraków, Poland

12th International Workshop on Meson Production, Properties and Interaction,

KRAKÓW, POLAND, 31 May - 5 June 2012

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Charm measurements at LHC	Hadroproduction of heavy quarks	Reuslts vs. experimental data	Open charm via Double Parton Scattering

Outline

- Hadroproduction of heavy quarks
 - parton model vs. k_t -factorization approach
 - unintegrated gluon densities for the proton
 - hadronization into open heavy mesons

3

Reuslts vs. experimental data

- p_t spectra in different rapidity regions @ ALICE and LHCb
- effects of hadronization and quark mass uncertainty

Open charm via Double Parton Scattering

Based on:

Łuszczak, Maciuła, Szczurek, Phys. Rev. D 79 (2009) 034009 Maciuła, Szczurek, Ślipek, Phys. Rev. D 83 (2011) 054014 Łuszczak, Maciuła, Szczurek, Phys. Rev. D 85, 094034 (2012)

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

2999999999

KT

Hadroproduction of heavy quarks

Open charm via Double Parton Scattering

Heavy quarks measurements at LHC

assassassassassassassas

- direct: open charm/bottom mesons → reconstruction of all decay products (K⁻π⁺, K⁺K⁻π⁺, K⁻π⁺π⁺)
- indirect: nonphotonic electrons/muons → leptons from semileptonic decays of heavy flavoured mesons

- ALICE, $|y_D| < 0.5$, JHEP, 01 (2012) 128,
- LHCb, 2.0 < y_D < 4.5, small x region!
 LHCb-CONF-2010-013
- ATLAS, widest rapidity interval, $|\eta| < 2.5$

Reuslts vs. experimental data

Open charm via Double Parton Scattering

Dominant mechanisms of $Q\bar{Q}$ production

• Leading order processes contributing to $Q\bar{Q}$ production:

- gluon-gluon fusion dominant at high energies
- $q\bar{q}$ anihilation important only near the threshold
- some of next-to-leading order diagrams:

very important NLO contributions \rightarrow factor 2

< □ > < 同 > < 三

Charm measurements at LHC	Hadroproduction of heavy quarks	Reuslts vs. experimental data	Open charm via Double Parton Scattering
	● 0 0000		
parton model vs. kt-factorization approach			
pQCD standard approach			

collinear approximation \rightarrow transverse momenta of the incident partons are assumed to be zero

• quadrupuly differential cross section:

$$\frac{d\sigma}{dy_1 dy_2 d^2 p_t} = \frac{1}{16\pi^2 \hat{s}^2} \sum_{i,j} x_1 p_i(x_1, \mu^2) \ x_2 p_j(x_2, \mu^2) \ \overline{|\mathcal{M}_{ij}|^2}$$

- p_i(x₁, μ²), p_j(x₂, μ²) standard parton distributions in hadron (e.g. CTEQ, GRV, GJR, MRST, MSTW)
- NLO on-shell matrix elements well-known

several packages:

- FONLL (Cacciari *et al.*) one particle distributions and total cross sections
- more exclusive tools PYTHIA. HERWIG, MC@NLO

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Charm measurements at LHC

Hadroproduction of heavy quarks

Reuslts vs. experimental data

Open charm via Double Parton Scattering

parton model vs. kt-factorization approach

k_{t} -factorization (semihard) approach

- charm and bottom quarks production at high energies
 → gluon-gluon fusion
- QCD collinear approach → only inclusive one particle distributions, total cross sections

LO k_t -factorization approach $\longrightarrow \kappa_{1,t}, \kappa_{2,t} \neq 0$ $\Rightarrow Q\bar{Q}$ correlations

multi-differential cross section

$$\begin{aligned} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} &= \sum_{i,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{ij \to Q\bar{Q}}|^2} \\ &\times \delta^2 \left(\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}\right) \mathcal{F}_i(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2) \end{aligned}$$

- off-shell $\overline{|\mathcal{M}_{gg \to Q\bar{Q}}|^2} \longrightarrow$ Catani, Ciafaloni, Hautmann (very long formula)
- major part of NLO corrections automatically included
- $\mathcal{F}_i(x_1, \kappa_{1,t}^2), \ \mathcal{F}_j(x_2, \kappa_{2,t}^2)$ unintegrated parton distributions

•
$$x_1 = \frac{m_{1,t}}{\sqrt{s}} \exp(y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(y_2),$$

 $x_2 = \frac{m_{1,t}}{\sqrt{s}} \exp(-y_1) + \frac{m_{2,t}}{\sqrt{s}} \exp(-y_2),$ where $m_{i,t} = \sqrt{p_{i,t}^2 + m_Q^2}.$

Reuslts vs. experimental data 00 Open charm via Double Parton Scattering

unintegrated gluon densities for the proton

Different models of unintegrated parton distribution functions

- k_t -factorization \rightarrow replacement: $p_k(x, \mu_F^2) \longrightarrow \mathcal{F}_k(x, \kappa_t^2, \mu_F^2)$
- PDFs \longrightarrow UPDFs

$$xp_k(x,\mu_F^2) = \int_0^\infty d\kappa_t^2 \mathcal{F}(x,\kappa_t^2,\mu_F^2)$$

 UPDFs - needed in less inclusive measurements which are sensitive to the transverse momentum of the parton

gg-fusion dominance \Rightarrow great test of existing unintegrated gluon densities! especially at LHC (small-x)

several models:

- Kwiecinski, Jung (CCFM, wide x-range)
- Kimber-Martin-Ryskin (larger x-values)
- Kutak-Stasto, GBW (small-x, saturation effects)
- Ivanov-Nikolaev, KMS, etc.

Charm measurements at LHC

Hadroproduction of heavy quarks

euslts vs. experimental data

Open charm via Double Parton Scattering

unintegrated gluon densities for the proton

Differential cross section for charm quarks

Charm measurements at LHC

Hadroproduction of heavy quarks

Reuslts vs. experimental data

Open charm via Double Parton Scattering

hadronization into open heavy mesons

Fragmentation functions technique

- phenomenology \rightarrow fragmentation functions extracted from e^+e^- data
- often used: Peterson et al., Braaten et al., Kartvelishvili et al.
- numerically performed by rescalling transverse momentum at a constant rapidity (angle)
- from heavy quarks to heavy mesons:

$$\frac{d\sigma(y, p_t^M)}{dyd^2p_t^M} \approx \int \frac{D_{Q \to M}(z)}{z^2} \cdot \frac{d\sigma(y, p_t^Q)}{dyd^2p_t^Q} dz$$

where:
$$p_t^Q = \frac{p_t^M}{z}$$
 and $z \in (0, 1)$

• approximation:

rapidity unchanged in the fragmentation process $\rightarrow y_Q = y_M$

イロト・日間ト・日日ト・日日

Reusits vs. experimental data

Open charm via Double Parton Scattering 000000000

hadronization into open heavy mesons

Different models of FFs

Peterson et al.

• Braaten et al. $D_{Q \to M}(z) = N \frac{rz(1-z)^2}{(1-(1-r)z)^5} (F_1 + F_2)$ $F_1 = 6 - 18(1-2r)z + (21 - 74r + 68r^2)z^2$ $F_2 = 3(1-r)^2(1-2r_2r^2)z^4 - 2(1-r)(6 - 19r + 18r^2)z^3$ $r_c = 0.2, r_b = 0.07$

イロト イポト イヨト イヨト

• Kartvelishvili et al. $D_{Q \to M}(z) = N(1-z)z^{a}$ $a_{c} = 5.0, a_{b} = 14.0$

Reuslts vs. experimental data

Open charm via Double Parton Scattering

pt spectra in different rapidity regions @ ALICE and LHCb

- various UGDFs models → crucial test of their applicability at high energies and small x-values
- only KMR model gives well description of the ALICE and LHCb data
- significant difference between LO parton model and LO k_t-factorization

(日)

Reuslts vs. experimental data

Open charm via Double Parton Scattering 000000000

effects of hadronization and quark mass uncertainty

Image: A math a math

Э

Open charm via Double Parton Scattering •00000000

Production of two cc pairs in Double Parton Scattering

Consider $pp \rightarrow (c\bar{c})(c\bar{c})$ process, initiated by two hard (parton) scatterings in one proton-proton interaction

Łuszczak, Maciuła, Szczurek, Phys. Rev. D 85, 094034 (2012)

in the analogy to frequently considered mechanisms of

double gauge boson production or double Drell-Yan anihillation.

化口压 化塑胶 化医胶化医

Reuslts vs. experimental data

Open charm via Double Parton Scattering

Formalism of theoretical DPS modelling

The double-parton scattering formalism assumes two single-parton scatterings so in a simple probabilistic picture the cross section for DPS can be written as:

$$\sigma^{\text{DPS}}(pp \to c\bar{c}c\bar{c}X) = \frac{1}{2\sigma_{\text{eff}}}\sigma^{\text{SPS}}(pp \to c\bar{c}X_1) \cdot \sigma^{\text{SPS}}(pp \to c\bar{c}X_2)$$

The simple formula above can be generalized to include differential distributions:

 $\frac{d\sigma}{dy_1 dy_2 d^2 p_{1t} dy_3 dy_4 d^2 p_{2t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1 dy_2 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_3 dy_4 d^2 p_{2t}}$

- two subprocesses are not correlated and do not interfere
- $\sigma_{eff} = 14.5 \pm 1.7^{+1.7}_{-2.3}$ mb \Rightarrow Tevatron, CDF, F.Abe et al., PRD 56 3811 (1997)
- extra limitations for longitudinal momentum fractions of gluons: $x_1 + x_2 < 1$ and $x'_1 + x'_2 < 1$ cause the "second" emission must take into account that some momentum was used up in the "first" parton collision

Reuslts vs. experimental data 00 Open charm via Double Parton Scattering

double Parton Distribution Functions

A more general formula for the cross section in terms of so-called double-parton distributions (dPDFs):

$$d\sigma^{DPS} = \frac{1}{2\sigma_{eff}} \cdot F_{gg}(x_1, x_2, \mu_1^2, \mu_2^2) \cdot F_{gg}(x_1' x_2', \mu_1^2, \mu_2^2) \times d\sigma_{gg \to c\bar{c}}(x_1, x_1', \mu_1^2) d\sigma_{gg \to c\bar{c}}(x_2, x_2', \mu_2^2) dx_1 dx_2 dx_1' dx_2'$$

factorized form with standard PDFs

- $F_{gg}(x_1, x_2, b) = g(x_1)g(x_2)F(b)$, where F(b) is an overlap of the matter distribution in the transverse plane
- $1/\sigma_{eff} = \int d^2 b F^2(b) \Rightarrow$ universal factor (energy and process independent)

dPDFs from special evolution equations

- equal scales: $\mu_1=\mu_2=\mu$ (Snigireev)
- unequal scales: $\mu_1 \neq \mu_2$ (Ceccioperi, Gaunt-Stirling)

Reuslts vs. experimental data

Open charm via Double Parton Scattering

(日)

LO collinear predictions for DPS charm production

- DPS mechanism gives a large contributions to inclusive charm production
- dangerous approaching of the Donnachie-Landschoff parametrization of the total cross section ⇒ inclusion of unitarity effect and/or saturation of parton distributions may be necessary

Reusits vs. experimental data

Open charm via Double Parton Scattering

(日)

double evolution dPDFs vs. factorized form with PDFs

- inclusive double-scattering distributions in y and p⊥ are identical as for single-scattering
- no difference between both prescriptions in the case of charm production

Reuslts vs. experimental data

Open charm via Double Parton Scattering

Invariant mass and rapidity difference spectra

- DPS dominates at large rapidity difference and/or large invariant masses
- unique feature of DPS: possible production of cc pairs \Rightarrow experimental signature D^0D^0 , D^0D^+ , D^+D^+ , D^+D_s

(日)

Reuslts vs. experimental data

Open charm via Double Parton Scattering

Preliminary data from LHCb

Very recent news from CERN! LHCb-PAPER-2012-003 (V. Belayev)

SPS mechanism of cccc production can also contributes!
 see Schafer, Szczurek, Phys. Rev. D 85, 094029 (2012)

Reusits vs. experimental data

Open charm via Double Parton Scattering

D mesons from DPS mechanism (LO parton model)

TABLE I. The DPS cross section $(\sigma_{D^0D^0} + \sigma_{D^0D^0})/2$ in mb for the production of one meson in $\eta_1 \in (-2.5, 2.0)$ and the second meson in $\eta_2 \in (2.0, 2.5)$ (ATLAS, CMS), second column, and for $\eta_1, \eta_2 \in (-0.9, 0.9)$ (ALCE), third column, for different lower cuts on both mesons transverse momenta.

$p_{t,\min}$ (GeV)	ATLAS or CMS	ALICE	ALICE p_{t,D^0D^0} >4 GeV
0.0	2.59×10^{-3}	0.66×10^{-2}	0.58×10^{-3}
1.0	1.47×10^{-4}	2.48×10^{-3}	0.41×10^{-3}
2.0	0.32×10^{-5}	2.93×10^{-4}	1.54×10^{-4}
3.0	2.55×10^{-7}	0.35×10^{-4}	2.46×10^{-5}
4.0	2.33×10^{-8}	0.62×10^{-5}	0.49×10^{-5}

Image: A math a math

Charm measurements at LHC	Hadroproduction of heavy quarks	Reuslts vs. experimental data 00	Open charm via Double Parton Scattering 00000000●

Summary

- good description of the transverse momentum distributions of open charm mesons measured by ALICE and LHCb
- huge contribution to charm production cross section from Double-Parton-Scattering \rightarrow application of the k_t -factorization approach in our next step
- waiting for ATLAS data from large rapidity interval $|\eta_D| < 2.5$ (5 units, large rapidity difference)

Thank You for attention!

