



### Double pion photoproduction off nuclei

## Is there evidence for in-medium modifications of the $\sigma$ -meson?



Yasser Maghrbi

Meson 2012 - Cracow - Poland

# Introduction and motivation

#### Spontaneous breaking of chiral symmetry, fundamental symmetry of QCD

→ Clearly reflected in the hadron spectrum, without it, hadrons would appear as mass degenerate parity doublets

|                                  | baryons                                         | vector<br>mesons                              | pseudo-scalar<br>mesons |
|----------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------|
| Particle, $J^{\pi}$ , Mass       | <i>P</i> <sub>11</sub> , 1/2 <sup>-</sup> , 939 | ho, 1 <sup>-</sup> , 770                      | $\pi, 0^-, 134.7$       |
| Chiral partner, $J^{\pi}$ , Mass | S <sub>11</sub> , 1/2 <sup>+</sup> , 1535       | <i>a</i> <sub>1</sub> , 1 <sup>+</sup> , 1260 | $\sigma, 0^+, 400-1200$ |
| Mass split                       | $\approx 600$                                   | $\approx 500$                                 | 266-1066                |



#### **Models** : density and temperature dependence of the chiral condensate and QCD and hadron pictures indirectly connected via QCD sum rules

- $\rightarrow$  Partial restoration of chiral symmetry
- $\rightarrow$  In medium modification of hadrons







V. Bernard et al. PRL 59 (1987)

- At high temperature /density, the  $\sigma$ -meson ( $J^{\pi} 0^{-}$ ) becomes degenerate with its chiral partner ( $J^{\pi} 0^{+}$ ) the  $\pi$ -meson
- $\sigma$  decays into  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}\,$  but not into  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +/ \mathchar`-}$
- $\rightarrow$  In medium modification of  $\pi^0\pi^0$  invariant mass.
  - compare  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$  and  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +/ \scriptscriptstyle -}$  inv. mass spectra for the same target
  - compare  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$  and  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +/ \scriptscriptstyle -}$  inv. mass spectra for different targets



Nuclear mass dependence of the invariant mass distributions is seen in hadron and photon induced reactions, consistent with the  $\sigma$  modification in nuclear matter

Photon beam Bloch et al., TAPS@MAMI (2007) E. = 400 - 500 MeV E. = 500 - 550 MeV  $\pi^{\circ}\pi^{\circ}$ π<sup>°</sup>π<sup>°</sup> 6 dơ/dM[nb/MeV/A] 2 Δ  $\pi^{\circ}\pi^{+/2}$  $\pi^{\circ}\pi^{+/}$ 30 20 5 10 · · · · · معوو و لا لا الا ال 0 Λ 350 400 450 300 250 300 400 500  $M_{\pi\pi}$ [MeV]

The most recent results show that at least in Calcium, FSI are responsible for the effect

New measurements / better statistics / full solid angle coverage / more targets

# **Experimental setup**



#### **Accelerator**

**Racetrack Microtron** 

Electron beam up to 883 MeV

Upgraded up to 1.5 GeV (2006)

#### Rich program:

A1 : electron scattering

A2 : real photons

- A4 : parity violation
- X1 : X-Ray radiation







#### **Detectors**

- Crystal Ball : 672 NaI Crystals
- **PID** : 24 plastic scintillators
- 2 MWPC
- TAPS : 510 BaF2 Crystals
- Plastic Veto Wall

#### Almost $4\pi$ solid angle coverage!







# Results

Yasser Maghrbi - Meson2012 - Cracow

### **Particle identification:**

- Charged particles :  $E-\Delta E$  (CB/PID) + MWPCs
- Nucleons/photons : E vs Time-of-flight
- Baryons/electromagnetic shower : Pulse-shape analysis
- Veto decision : Charged or not.
- Reaction identification: Invariant mass / Missing Mass / Missing energy analysis



This data

Proton

Δ

## Mass dependence of $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$ and $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +/\cdot}$ invariant mass spectra



$$C_{\pi\pi}(A_{1}, A_{2}) = \frac{(d\sigma(A_{1})/dM)/\sigma(A_{1})}{(d\sigma(A_{2})/dM)/\sigma(A_{2})}$$

$$2 \int_{a}^{b} \frac{\pi^{o}\pi^{o}}{\pi^{o}\pi^{+/-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}}{\pi^{o}\pi^{+/-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}}{\mu^{o}\pi^{+/-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{+/-}}{\mu^{o}\pi^{o}\pi^{+/-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{o}}{\mu^{o}\pi^{-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{-}}{\mu^{o}\pi^{-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{-}}{\mu^{o}\pi^{-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{-}}{\mu^{o}\pi^{-}} \int_{a}^{b} \frac{\pi^{o}\pi^{o}\pi^{-}}{\mu^{-}} \int_{a}^{b} \frac{\pi^{o}\pi^{-}}{\mu^{-}} \int_{a}^{b} \frac{\pi^{-}}{\mu^{-}} \int_{a}^{b} \frac{\pi^{-}}{\mu$$

Very similar behavior for both  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +/ \scriptscriptstyle -}$  to  $\pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}$  reactions

Yasser Maghrbi - Meson2012 - Cracow

![](_page_12_Figure_0.jpeg)

### Size and influence of Final State Interactions

![](_page_12_Figure_2.jpeg)

#### Scaling factor

- close to 1 : cross sections scale like number of nucleons (negligible loss due to pion absorption)
- close to 2/3 : cross sections scale like surface (strong absorption)
- FSI almost negligible at low  $E_v$ , substantial at high  $E_v$
- Shape change of Invariant mass distributions correlates with energy dependence of FSI effects.

Yasser Maghrbi - Meson2012 - Cracow

### Comparison of invariant mass spectra to transport model calculations

🛆 Bloch et al

![](_page_13_Figure_2.jpeg)

• Excellent agreement of mixed charge channel and the model

• Strong softening of invariant mass of the neutral channel compared to the model

# **Conclusions and outlook**

- Precise results obtained for the invariant mass distributions of  $\pi^0\pi^0$  and  $\pi^0\pi^{+/-}$  from LD<sub>2</sub>, Li, C, Ca and Pb from threshold up to 600 MeV.
- Total and differential cross section in agreement with previous measurements
- A pronounced shift of strength towards small invariant masses is observed
- In contrast to previous results, the shift is observed in both final states
- Effect negligible at threshold and increases with increasing beam energy
   → FSI plays an important role in the effect
- Investigation of possible modification of the  $\sigma$  meson in medium needs model calculations

Yasser Maghrbi - Meson2012 - Cracow

Further interesting results on:

- photoproduction of  $\pi^0\pi^0$  by Markus Oberle
- photoproduction of  $\pi^0$  by Manuel Dieterle

are shown in the poster session on Saturday from 15:00 to 17:00

![](_page_17_Picture_0.jpeg)

# Thank you for your attention

![](_page_18_Figure_0.jpeg)

![](_page_18_Figure_1.jpeg)