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Our work

On the possibility to measure the π0 → γγ decay width and the γ∗γ → π0

transition form factor with the KLOE-2 experiment

D. Babusci, H. Czyż, F. Gonnella, S. Ivashyn, M. Mascolo, R. Messi,
D. Moricciani, A. Nyffeler, G. Venanzoni and the KLOE-2 Collaboration

Eur. Phys. J. C72, 1917 (2012) [arXiv:1109.2461 [hep-ph]]

Within 1 year of data taking, collecting
5 fb−1, KLOE-2 will be able to
measure:

• Γπ→γγ to 1% statistical precision.

• γ∗γ → π0 transition form factor
F (Q2) in the region of very low,
space-like momenta
0.01 GeV2 ≤ Q2 ≤ 0.1 GeV2

with a statistical precision of less
than 6% in each bin.
KLOE-2 can (almost) directly
measure slope of form factor at
origin.
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Simulation of KLOE-2 measurement of F (Q2)
(red triangles).
Solid line: F (0) given by chiral anomaly.
Dashed line: form factor according to on-shell
LMD+V model (Knecht, Nyffeler, EPJC ’01).
CELLO (black crosses) and CLEO (blue stars)

data at higher Q2.



Hadronic light-by-light scattering: Summary of selected results
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π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Relevant scales in 〈VVVV 〉 (off-shell !): 0− 2 GeV, i.e. much larger than mµ !
No direct relation to experimental data → need hadronic model (or lattice QCD)

Contribution to aµ × 1011:

BPP: +83 (32)
HKS: +90 (15)
KN: +80 (40)
MV: +136 (25)
2007: +110 (40)
PdRV:+105 (26)
N,JN: +116 (40)
GFW: +217 (91)
GdR: +150 (3)

-19 (13)
-5 (8)

0 (10)

-19 (19)
-19 (13)

ud.: -45

+85 (13)
+83 (6)
+83 (12)

+114 (10)

+114 (13)
+99 (16)
+81 (12)
+68 (3)

ud.: +∞

-4 (3) [f0, a1]
+1.7 (1.7) [a1]

+22 (5) [a1]

+8 (12) [f0, a1]
+15 (7) [f0, a1]

+21 (3)
+10 (11)

0

+2.3 [c-quark]
+21 (3)

+136 (59)

+82 (6)

ud.: +60
ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’96, ’98, ’02;
KN = Knecht, Nyffeler ’02; MV = Melnikov, Vainshtein ’04; 2007 = Bijnens, Prades; Miller, de
Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein ’09; N,JN = Nyffeler ’09; Jegerlehner,
Nyffeler ’09; GFW = Goecke, Fischer, Williams ’11; GdR = Greynat, de Rafael ’12 (error only
reflects variation MQ = 240± 10 MeV, 20%-30% systematic error)

Recall (in units of 10−11): δaµ(had. VP) ≈ 45; δaµ(exp [BNL]) = 63; δaµ(future exp) = 15
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Relevant momentum regions in aLbyL;π0

µ

In Knecht, Nyffeler ’02, a 2-dimensional integral representation was derived for a
certain class (VMD-like) of form factors (schematically):

aLbyL;π0

µ =

Z ∞
0

dQ1

Z ∞
0

dQ2

X
i

wi (Q1,Q2) fi (Q1,Q2)

with universal weight functions wi . Dependence on form factors resides in the fi .
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Relevant momentum regions
around 0.25− 1.25 GeV. As
long as form factors in
different models lead to
damping, we expect
comparable results for

aLbyL;π0

µ , at the level of 20%.

Jegerlehner, Nyffeler ’09
derived 3-dimensional integral
representation for general
form factors. Integration over
Q2

1 ,Q
2
2 , cos θ, where

Q1 · Q2 = |Q1||Q2| cos θ.



Pion-pole in 〈VVVV 〉 versus pion-exchange in had. LbyL in aµ

To uniquely identify contribution of exchanged neutral pion π0 in Green’s function
〈VVVV 〉, we need to pick out pion-pole:
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q

q

q

π0

1

2

4

q
3

+ crossed diagrams

lim
(q1+q2)2→m2

π

((q1 + q2)2 −m2
π)〈VVVV 〉

Residue of pole: on-shell vertex function 〈0|VV |π〉 → on-shell form factor
Fπ0γ∗γ∗ (q2

1 , q
2
2)

But in contribution to the muon g − 2, we have to evaluate Feynman diagrams,
integrating over the photon momenta with exchanged off-shell pions.
For all pseudoscalars:

π0 ,, η ’η ,...

Shaded blobs represent off-shell form factor FPS∗γ∗γ∗ where PS = π0, η, η′, π0′, . . .
Off-shell form factors are either inserted “by hand” starting from constant, pointlike
Wess-Zumino-Witten (WZW) form factor or using e.g. some resonance Lagrangian.

Similar statements apply for exchanges (or loops) of other resonances.
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Off-shell pion form factor Fπ0∗γ∗γ∗ from 〈VVP〉

• Following Bijnens, Pallante, Prades ’95, ’96; Hayakawa, Kinoshita, Sanda ’95,
’96; Hayakawa, Kinoshita ’98, we can define off-shell form factor for π0:Z

d4x d4y e i(q1·x+q2·y) 〈 0|T{jµ(x)jν(y)P3(0)}|0〉

= εµναβ qα1 qβ2
i〈ψψ〉
Fπ

i

(q1 + q2)2 −m2
π

Fπ0∗γ∗γ∗ ((q1 + q2)2, q2
1 , q

2
2) + . . .

Up to small mixing effects of P3 with η and η′ and neglecting exchanges of

heavier states like π0′, π0′′, . . .

jµ = light quark part of the electromagnetic current: jµ(x) = (ψQ̂γµψ)(x)

ψ ≡

0@ u
d
s

1A, Q̂ = diag(2,−1,−1)/3

P3 = ψiγ5
λ3

2
ψ =

“
uiγ5u − diγ5d

”
/2, 〈ψψ〉 = single flavor quark condensate

Bose symmetry: Fπ0∗γ∗γ∗ ((q1 + q2)2, q2
1 , q

2
2) = Fπ0∗γ∗γ∗ ((q1 + q2)2, q2

2 , q
2
1)

• Note: for off-shell pions, instead of P3(x), we could use any other suitable
interpolating field, like (∂µA3

µ)(x) or even an elementary pion field π3(x) !



On-shell form factor Fπ0γ∗γ∗ and transition form factor F (Q2)

• On-shell π0γ∗γ∗ form factor between an on-shell pion and two off-shell
photons:

i

Z
d4x e iq1·x〈0|T{jµ(x)jν(0)}|π0(q1 + q2)〉 = εµνρσq

ρ
1 qσ2 Fπ0γ∗γ∗(q2

1 , q
2
2)

Relation to off-shell form factor:

Fπ0γ∗γ∗(q2
1 , q

2
2) ≡ Fπ0∗γ∗γ∗(m2

π, q
2
1 , q

2
2)

Form factor for real photons is related to π0 → γγ decay width:

F2
π0γ∗γ∗(q2

1 = 0, q2
2 = 0) =

4

πα2m3
π

Γπ0→γγ

Often normalization with chiral anomaly is used:

Fπ0γ∗γ∗(0, 0) =
1

4π2Fπ

• Pion-photon transition form factor:

F (Q2) ≡ Fπ0γ∗γ∗(−Q2, q2
2 = 0), Q2 ≡ −q2

1

Note that q2
2 = 0, but ~q2 6= ~0 for on-shell photon !



Pion-exchange versus pion-pole contribution to aLbyL;π0

µ

• Off-shell form factors have been
used to evaluate the pion-exchange
contribution in Bijnens et al ’96,
Hayakawa et al ’96, ’98. “Redis-
covered” by Jegerlehner in ’07, ’08.
Consider diagram:

−q = q + q

q
1

3
0π

q = 0
4

q
2

1 2

q + q
1 2

Fπ0∗γ∗γ∗ ((q1 + q2)2, q2
1 , q

2
2) × Fπ0∗γ∗γ∗ ((q1 + q2)2, (q1 + q2)2, 0)

• On the other hand, Knecht, Nyffeler ’02 used on-shell form factors:

Fπ0∗γ∗γ∗ (m2
π , q

2
1 , q

2
2) × Fπ0∗γ∗γ∗ (m2

π , (q1 + q2)2, 0)

• But form factor at external vertex Fπ0∗γ∗γ∗ (m2
π , (q1 + q2)2, 0) for

(q1 + q2)2 6= m2
π violates momentum conservation, since momentum of external

soft photon vanishes ! Often the following misleading notation was used

Fπ0γ∗γ∗ ((q1 + q2)2, 0) ≡ Fπ0∗γ∗γ∗ (m2
π , (q1 + q2)2, 0)

At external vertex identification with transition form factor was made (wrongly !).

• Melnikov, Vainshtein ’04 had already observed this inconsistency and proposed to
use

Fπ0∗γ∗γ∗ (m2
π , q

2
1 , q

2
2) × Fπ0∗γ∗γ∗ (m2

π ,m
2
π , 0)

i.e. a constant form factor at the external vertex given by the WZW term.
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Pion-exchange versus pion-pole contribution to aLbyL;π0

µ (continued)

• However, this prescription will only yield the so-called pion-pole
contribution and not the full pion-exchange contribution !

• In general, any evaluation e.g. using some resonance Lagrangian, will lead
to off-shell form factors at both the vertices in the Feynman integral.

• Strictly speaking, the identification of the pion-exchange contribution is
only possible, if the pion is on-shell. Only in some specific model where
pions appear as propagating fields can one identify the contribution from
off-shell pions.

In the numerical results later, we will denote by

• (JN): pion-exchange contribution with off-shell pion form factors Fπ0∗γ∗γ∗

at both vertices.

• (MV): pion-pole contribution with on-shell pion form factor Fπ0γ∗γ∗ at
one vertex and constant form factor (WZW) at external vertex.



KLOE-2 impact on aLbyL;π0

µ

• Value of aLbyL;π0

µ is currently obtained using various hadronic models.

• Any experimental information on the relevant form factors can therefore
help to check the consistency of models and reduce the error.

• As stressed before, what enters in aLbyL;π0

µ is the fully off-shell form factor
Fπ0∗γ∗γ∗((q1 + q2)2, q2

1 , q
2
2) (vertex function).

• A measurement of the transition form factor Fπ0∗γ∗γ∗(m2
π, q

2, 0) can, in
general, only be sensitive to a subset of the model parameters and, in
general, does not allow to reconstruct the full off-shell form factor.

• Good description for transition form factor is only necessary, not sufficient,

in order to uniquely determine aLbyL;π0

µ .

• From one model to another, uncertainty of aLbyL;π0

µ related to the off-shell

pion can be very different. Complete error on aLbyL;π0

µ should take into
account model dependence.



KLOE-2 impact on aLbyL;π0

µ (continued)

For illustration, but not to present some new “realistic” estimate, we will study
the impact of the KLOE-2 measurements on two models:

• VMD (off-shell): has only two parameters.

Other models with very few parameters are constituent quark models or
holographic models (AdS/QCD).

• LMD+V (off-shell) (Knecht, Nyffeler, EPJC ’01): has many poorly
constrained parameters.

Including the uncertainties related to the off-shellness of the pion, which
dominate the final error, one obtains the estimate:

aLbyL;π0

µ;LMD+V = (72± 12)× 10−11

(Nyffeler ’09; Jegerlehner, Nyffeler ’09).



The VMD form factor

Vector Meson Dominance:

FVMD
π0∗γ∗γ∗((q1 + q2)2, q2

1 , q
2
2) =

NC

12π2Fπ

M2
V

q2
1 −M2

V

M2
V

q2
2 −M2

V

on-shell = off-shell form factor !

Only two model parameters even for off-shell form factor: Fπ and MV

Transition form factor:

FVMD(Q2) =
NC

12π2Fπ

M2
V

Q2 + M2
V



The LMD+V form factor (off-shell)

Knecht, Nyffeler, EPJC ’01; Nyffeler ’09

• Ansatz for 〈VVP〉 and thus Fπ0∗γ∗γ∗ in large-NC QCD in chiral limit with
1 multiplet of lightest pseudoscalars (Goldstone bosons) and 2 multiplets
of vector resonances, ρ, ρ′ (lowest meson dominance (LMD) + V)

• Fπ0∗γ∗γ∗ fulfills all leading (and some subleading) QCD short-distance
constraint from Operator Product Expansion (OPE)

• Reproduces Brodsky-Lepage (BL): lim
Q2→∞

Fπ0∗γ∗γ∗(m2
π,−Q2, 0) ∼ 1/Q2

(OPE and BL cannot be fulfilled simultaneously with only one vector resonance)

• Normalized to decay width Γπ0→γγ

Off-shell LMD+V form factor:

FLMD+V
π0∗γ∗γ∗(q2

3 , q
2
1 , q

2
2) = −Fπ

3

q2
1 q2

2 (q2
1 + q2

2 + q2
3) + PV

H (q2
1 , q

2
2 , q

2
3)

(q2
1 −M2

V1
) (q2

1 −M2
V2

) (q2
2 −M2

V1
) (q2

2 −M2
V2

)

PV
H (q2

1 , q
2
2 , q

2
3) = h1 (q2

1 + q2
2)2 + h2 q2

1 q2
2 + h3 (q2

1 + q2
2) q2

3 + h4 q4
3

+h5 (q2
1 + q2

2) + h6 q2
3 + h7

q2
3 = (q1 + q2)2

Fπ = 92.4 MeV, MV1
= Mρ = 775.49 MeV, MV2

= Mρ′ = 1.465 GeV

Free parameters: hi



The LMD+V form factor (on-shell)

On-shell LMD+V form factor:

FLMD+V
π0γ∗γ∗ (q2

1 , q
2
2)

= −Fπ
3

q2
1 q2

2 (q2
1 + q2

2) + h1 (q2
1 + q2

2)2 + h̄2 q2
1 q2

2 + h̄5 (q2
1 + q2

2) + h̄7

(q2
1 −M2

V1
) (q2

1 −M2
V2

) (q2
2 −M2

V1
) (q2

2 −M2
V2

)

h̄2 = h2 + m2
π

h̄5 = h5 + h3m
2
π

h̄7 = h7 + h6m
2
π + h4m

4
π

Transition form factor:

FLMD+V(Q2) = −Fπ
3

1

M2
V1

M2
V2

h1Q
4 − h̄5Q

2 + h̄7

(Q2 + M2
V1

)(Q2 + M2
V2

)

• h1 = 0 in order to reproduce Brodsky-Lepage behavior.

• Can treat h1 as free parameter to fit the BABAR data, but the form factor
does then not vanish for Q2 →∞, if h1 6= 0.
As pointed out by Dorokhov ’10, this violates the Terazawa-West inequality

|F (Q2)| ≤ 1/Q which follows from unitarity (’72, ’73).



Form factor F (Q2): data sets and normalization

Data sets used for fits:

A0 : CELLO, CLEO, PDG
A1 : CELLO, CLEO, PrimEx
A2 : CELLO, CLEO, PrimEx, KLOE-2

B0 : CELLO, CLEO, BABAR, PDG
B1 : CELLO, CLEO, BABAR, PrimEx
B2 : CELLO, CLEO, BABAR, PrimEx, KLOE-2

Normalization for F (0):

• ΓPDG
π0→γγ = 7.74± 0.48 eV (6.2% precision) for current PDG value

• ΓPrimEx
π0→γγ = 7.82± 0.22 eV (2.8% precision) from PrimEx experiment

• ΓKLOE−2
π0→γγ = 7.73± 0.08 eV (1% precision) for the KLOE-2 simulation

As noted in Nyffeler, PoS ’09, the uncertainty in the normalization of the form

factor was not taken into account in most evaluations of aLbyL;π0

µ (with the
exception later of Dorokhov et al. ’11).

In most papers, simply Fπ = 92.4 MeV is used without any error attached to it.
Value is close to Fπ = (92.20± 0.14) MeV obtained from π+ → µ+νµ(γ).



Fitting the models

Model Data χ2/d.o.f . Parameters
VMD A0 6.6/19 MV = 0.778(18) GeV Fπ = 0.0924(28) GeV
VMD A1 6.6/19 MV = 0.776(13) GeV Fπ = 0.0919(13) GeV
VMD A2 7.5/27 MV = 0.778(11) GeV Fπ = 0.0923(4) GeV

VMD B0 77/36 MV = 0.829(16) GeV Fπ = 0.0958(29) GeV
VMD B1 78/36 MV = 0.813(8) GeV Fπ = 0.0925(13) GeV
VMD B2 79/44 MV = 0.813(5) GeV Fπ = 0.0925(4) GeV

LMD+V, h1 = 0 A0 6.5/19 h̄5 = 6.99(32) GeV4 h̄7 = −14.81(45) GeV6

LMD+V, h1 = 0 A1 6.6/19 h̄5 = 6.96(29) GeV4 h̄7 = −14.90(21) GeV6

LMD+V, h1 = 0 A2 7.5/27 h̄5 = 6.99(28) GeV4 h̄7 = −14.83(7) GeV6

LMD+V, h1 = 0 B0 65/36 h̄5 = 7.94(13) GeV4 h̄7 = −13.95(42) GeV6

LMD+V, h1 = 0 B1 69/36 h̄5 = 7.81(11) GeV4 h̄7 = −14.70(20) GeV6

LMD+V, h1 = 0 B2 70/44 h̄5 = 7.79(10) GeV4 h̄7 = −14.81(7) GeV6

LMD+V, h1 6= 0 A0 6.5/18 h̄5 = 6.90(71) GeV4 h̄7 = −14.83(46) GeV6 h1 = −0.03(18) GeV2

LMD+V, h1 6= 0 A1 6.5/18 h̄5 = 6.85(67) GeV4 h̄7 = −14.91(21) GeV6 h1 = −0.03(17) GeV2

LMD+V, h1 6= 0 A2 7.5/26 h̄5 = 6.90(64) GeV4 h̄7 = −14.84(7) GeV6 h1 = −0.02(17) GeV2

LMD+V, h1 6= 0 B0 18/35 h̄5 = 6.46(24) GeV4 h̄7 = −14.86(44) GeV6 h1 = −0.17(2) GeV2

LMD+V, h1 6= 0 B1 18/35 h̄5 = 6.44(22) GeV4 h̄7 = −14.92(21) GeV6 h1 = −0.17(2) GeV2

LMD+V, h1 6= 0 B2 19/43 h̄5 = 6.47(21) GeV4 h̄7 = −14.84(7) GeV6 h1 = −0.17(2) GeV2

Main improvement in normalization parameter, Fπ for VMD and h̄7 for
LMD+V. But more data also better determine the other parameters MV or h̄5.



Results for aLbyL;π0

µ

Model Data aLbyL;π0

µ × 1011

VMD A0 (57.2± 4.0)JN

VMD A1 (57.7± 2.1)JN

VMD A2 (57.3± 1.1)JN

LMD+V, h1 = 0 A0 (72.3± 3.5)∗JN
(79.8± 4.2)MV

LMD+V, h1 = 0 A1 (73.0± 1.7)∗JN
(80.5± 2.0)MV

LMD+V, h1 = 0 A2 (72.5± 0.8)∗JN
(80.0± 0.8)MV

LMD+V, h1 6= 0 A0 (72.4± 3.8)∗JN
LMD+V, h1 6= 0 A1 (72.9± 2.1)∗JN
LMD+V, h1 6= 0 A2 (72.4± 1.5)∗JN

LMD+V, h1 6= 0 B0 (71.9± 3.4)∗JN
LMD+V, h1 6= 0 B1 (72.4± 1.6)∗JN
LMD+V, h1 6= 0 B2 (71.8± 0.7)∗JN

∗ error does not include uncertainty due to off-shellness of pion

Error in aLbyL;π0

µ related to model parameters determined by Γπ0→γγ
(normalization; not taken into account before) and F (Q2) is reduced as follows:

• Sets A0, B0: δaLbyL;π0

µ ≈ 4× 10−11

• Sets A1, B1: δaLbyL;π0

µ ≈ 2× 10−11 (+ ΓPrimEx
π0→γγ )

• Sets A2, B2: δaLbyL;π0

µ ≈ (0.7− 1.1)× 10−11 (+ KLOE-2 data)



VMD versus LMD+V with h1 = 0

• Both VMD and LMD+V with h1 = 0 can fit the data sets A0, A1 and A2
very well with essentially the same χ2/d .o.f .

• Nevertheless, the results for aLbyL;π0

µ differ by about 20%:

aLbyL;π0

µ;VMD ≈ 57.5× 10−11

aLbyL;π0

µ;LMD+V ≈ 72.5× 10−11 (JN)

[aLbyL;π0

µ;LMD+V ≈ 80× 10−11 (MV)]

• Due to the different behavior in these models of the fully off-shell form
factor Fπ0∗γ∗γ∗((q1 + q2)2, q2

1 , q
2
2) on all momentum variables.

• VMD model is known to have a wrong high-energy behavior
Fπ0∗γ∗γ∗(m2

π,Q
2,Q2) ∼ 1/Q4 instead of 1/Q2 according to the OPE.

• The small final error of ±1.1× 10−11 for the VMD model with only two
parameters, Fπ and MV , which are both fixed by the width and form
factor measurements, might therefore be very deceptive.



Conclusions

• Planned measurements at KLOE-2 can help to reduce some of the
uncertainty in the (presumably !) numerically dominant pion exchange
contribution to had. LbyL scattering.

• Error in aLbyL;π0

µ related to the model parameters determined by Γπ0→γγ
and F (Q2) will be reduced as follows:

• δaLbyL;π0

µ ≈ 4× 10−11 (with current data for F (Q2) + ΓPDG
π0→γγ)

• δaLbyL;π0

µ ≈ 2× 10−11 (+ ΓPrimEx
π0→γγ )

• δaLbyL;π0

µ ≈ (0.7− 1.1)× 10−11 (+ KLOE-2 data)

• Note that this error does not account for other potential uncertainties in

aLbyL;π0

µ , e.g. related to the off-shellness of the pion or the choice of
model.

• Recall (in units of 10−11):

aLbyL;π0

µ;LMD+V(N,JN) = 72± 12

δaLbyL
µ (N,JN) = 40; δaLbyL

µ (PdRV) = 26; δaLbyL
µ (GFW) = 91

δaµ(had. VP) ≈ 45; δaµ(exp [BNL]) = 63; δaµ(future exp) = 15



Backup slides



Relevant momentum regions in aLbyL;π0

µ

In Knecht, Nyffeler ’02, a 2-dimensional integral representation was derived for a
certain class (VMD-like) of on-shell form factors (schematically):

aLbyL;π0

µ =

Z ∞
0

dQ1

Z ∞
0

dQ2

X
i

wi (Q1,Q2) fi (Q1,Q2)

with universal weight functions wi . Dependence on form factors resides in the fi .
Expressions with on-shell form factors are not valid as they stand. One needs to set
form factor at external vertex to a constant to obtain pion-pole contribution.
Expressions are valid for WZW and off-shell VMD form factors.
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• wf1 (Q1,Q2) enters for WZW form

factor. Tail leads to ln2 Λ divergence
for momentum cutoff Λ.

• wg1 (MV ,Q1,Q2) enters for VMD
form factor.

• Relevant momentum regions are
therefore around 0.25− 1.25 GeV.
As long as form factors in different
models lead to damping, we expect

comparable results for aLbyL;π0

µ , at
the level of 20%. Similarly for η, η′.

Jegerlehner, Nyffeler ’09 derived 3-dimensional integral representation for general form
factors. Integration over Q2

1 ,Q
2
2 , cos θ, where Q1 · Q2 = |Q1||Q2| cos θ.



Relevant momentum regions in aLbyL;PS
µ

Result for pseudoscalar exchange contribution aLbyL;PS
µ × 1011 for off-shell LMD+V

and VMD form factors obtained with momentum cutoff Λ in 3-dimensional integral
representation of JN ’09 (integration over square). In brackets, relative contribution of
the total obtained with Λ = 20 GeV.

Λ π0 η η′
[GeV] LMD+V (h3 = 0) LMD+V (h4 = 0) VMD VMD VMD

0.25 14.8 (20.6%) 14.8 (20.3%) 14.4 (25.2%) 1.76 (12.1%) 0.99 (7.9%)
0.5 38.6 (53.8%) 38.8 (53.2%) 36.6 (64.2%) 6.90 (47.5%) 4.52 (36.1%)

0.75 51.9 (72.2%) 52.2 (71.7%) 47.7 (83.8%) 10.7 (73.4%) 7.83 (62.5%)
1.0 58.7 (81.7%) 59.2 (81.4%) 52.6 (92.3%) 12.6 (86.6%) 9.90 (79.1%)
1.5 64.9 (90.2%) 65.6 (90.1%) 55.8 (97.8%) 14.0 (96.1%) 11.7 (93.2%)
2.0 67.5 (93.9%) 68.3 (93.8%) 56.5 (99.2%) 14.3 (98.6%) 12.2 (97.4%)
5.0 71.0 (98.8%) 71.9 (98.8%) 56.9 (99.9%) 14.5 (99.9%) 12.5 (99.9%)

20.0 71.9 (100%) 72.8 (100%) 57.0 (100%) 14.5 (100%) 12.5 (100%)

π0:

• Although weight functions plotted earlier are not applicable to off-shell LMD+V
form factor, region below Λ = 1 GeV gives the bulk of the result: 82% for
LMD+V, 92% for VMD.

• No damping from off-shell LMD+V form factor at external vertex since χ 6= 0
(new short-distance constraint). Note: VMD falls off too fast, compared to OPE.

η, η′:
• Mass of intermediate pseudoscalar is higher than pion mass → expect a stronger

suppression from propagator.

• Peak of relevant weight functions shifted to higher values of Qi . For η′, vector
meson mass is also higher MV = 859 MeV. Saturation effect and the suppression
from the VMD form factor only fully set in around Λ = 1.5 GeV: 96% of total for
η, 93% for η′.



Slope of the transition form factor at the origin

• An important quantity is the slope of the form factor at the origin:

a ≡ m2
π

1

Fπ0γ∗γ∗(0, 0)

d Fπ0γ∗γ∗(q2, 0)

d q2

˛̨̨̨
˛
q2=0

• Within ChPT, the slope is related to low-energy constants of the chiral

Lagrangian of order p6 in the odd intrinsic-parity sector. A precise measurement

could help to distinguish between estimates of the low-energy constants, which

have been made using various models: e.g. resonance Lagrangians (VMD, LMD,

LMD+V), constituent quark models, holographic models (AdS/QCD), . . .

• For time-like photon virtualities (q2 > 0), the slope can be measured directly in

the rare decay π0 → e+e−γ, but the current experimental uncertainty is big.

• The PDG quotes since many years a = 0.032± 0.004.

• This value is essentially the result obtained by the CELLO collaboration
for space-like momenta q2 = −Q2 < 0. CELLO fitted their data, collected
for Q2 ≥ 0.5 GeV2, with a simple VMD parametrization for the form
factor and then used the analytical expression to obtain the slope.

• The potential model dependence of this extrapolation from rather large
values of Q2 to the origin is not accounted for by the PDG in the central
value and the error for the slope parameter.
Also contributions from loops in ChPT at order p6, aloops(µ = Mρ) = 0.005

(Bijnens et al. ’90), are not taken into account.


