THE NATURE OF THE ORBITALLY EXCITED CHARMED-STRANGE MESONS THROUGH NONLEPTONIC $B \to D^{(*)} D^{(*)}_{sJ} \text{ DECAYS}$

J. Segovia, C. Albertus, E. Hernández, F. Fernández and D.R. Entem

Grupo de Física Nuclear and IUFFyM

Universidad de Salamanca

12th International Workshop on Meson Production, Properties and Interaction Kraków 31 May - 5 June 2012

Jorge Segovia et al., segonza@usal.es The nature of the orbitally excited charmed-strange mesons

Introduction Constituent quark model CQM predictions on D_5 P_8 vave mesons Nonleptonic B decays into $D^{(+)}D^{(+)}$ final states sJ Summary

Table of Contents

Constituent quark model

CQM predictions on D_s P-wave mesons

Nonleptonic *B* decays into $D^{(*)}D^{(*)}_{sJ}$ final states

Summary

∃ ► < ∃ ►</p>

Introduction

Constituent quark model CQM predictions on D_s P-wave mesons Nonleptonic *B* decays into $D^{(*)}D^{(*)}_{s}$ final states Summary

Table of Contents

2 Constituent quark mode

3 CQM predictions on D_s P-wave mesons

Onleptonic *B* decays into $D^{(*)}D^{(*)}_{sJ}$ final states

Summary

- 4 回 ト 4 ヨ ト

 $\begin{array}{c} \\ & \text{Introduction} \\ & \text{Constituent quark model} \\ & \text{CQM predictions on } D_{S} \xrightarrow{P} \text{wave mesons} \\ & \text{Nonleptonic } B \text{ decays into } D^{(*)} D^{(*)}_{S} \xrightarrow{f_{S}} \text{ formations} \\ & \text{SJ} \end{array}$

Experimental measurements

Nonleptonic decays of B mesons (at quark level $\overline{b} \rightarrow \overline{c}c\overline{s}$) have been used to search for new charmonium and charmed-strange mesons and to study their properties in detail.

- The BaBar Collaboration found the $D_{s0}^*(2317)$ in the inclusive $D_s^+\pi^0$ invariant mass distribution.
- The CLEO Collaboration observed its doublet partner $D_{s1}(2460)$ in the $D_s^{*+}\pi^0$ final state.

The properties of these states were not well known until the Belle Collaboration observed the $B \rightarrow \overline{D}D_{s1}^*(2317)$ and $B \rightarrow \overline{D}D_{s1}(2460)$ decays.

Last measurements: The Belle Collaboration in Phys. Rev. D83, 051102 (2011)

$$\begin{split} R_{D0} &= \frac{\mathcal{B}(B \to DD_{s0}^*(2317))}{\mathcal{B}(B \to DD_s)} = 0.10 \pm 0.03, \quad R_{D^*0} = \frac{\mathcal{B}(B \to D^*D_{s0}^*(2317))}{\mathcal{B}(B \to D^*D_s)} = 0.15 \pm 0.06, \\ R_{D1} &= \frac{\mathcal{B}(B \to DD_{s1}(2460))}{\mathcal{B}(B \to DD_s^*)} = 0.44 \pm 0.11, \quad R_{D^*1} = \frac{\mathcal{B}(B \to D^*D_{s1}(2460))}{\mathcal{B}(B \to D^*D_s^*)} = 0.58 \pm 0.12, \\ R_{D1'} &= \frac{\mathcal{B}(B \to DD_{s1}(2536))}{\mathcal{B}(B \to DD_s^*)} = 0.049 \pm 0.010, \quad R_{D^*1'} = \frac{\mathcal{B}(B \to D^*D_{s1}(2536))}{\mathcal{B}(B \to D^*D_s^*)} = 0.044 \pm 0.010. \end{split}$$

The study of nonleptonic decays can help to shed light on the structure of the P-wave charmed-strange mesons.

Introduction Constituent quark model CQM predictions on D_{S} P_{S} wave mesons Nonleptonic B decays into $D^{(*)}_{SJ}$ $D^{(*)}_{SJ}$ Summary

Heavy Quark Symmetry assumptions

• Meson properties are characterized by the dynamics of the light quark:

$$ec{j_q} = ec{\mathcal{L}} + ec{s_q}$$

 $ec{J} = ec{j_q} + ec{s_Q}$

3

• The lowest D_s *P*-wave mesons can be grouped into two doublets:

$$j_q^P = \frac{1}{2}^+ \to J^P = 0^+, 1^+$$

 $j_q^P = \frac{3}{2}^+ \to J^P = 1^+, 2^+$

Properties:

- Doublets are degenerated.
- Strong decays of the $D_{sJ}(j_q = 1/2)$ proceed only through S-waves \Rightarrow Broad states.
- Strong decays of the $D_{sJ}(j_q = 3/2)$ proceed only through D-waves \Rightarrow Narrow states.

Introduction

Constituent quark model CQM predictions on $D_s P_s^{*}$ wave mesons Nonleptonic *B* decays into $D^{(*)}D_s^{(*)}$ final states *sJ* Summary

Heavy Quark Symmetry predictions

Spectroscopy of D_s P-wave mesons:

$j_q^P = \frac{1}{2}^+$				$j_{q}^{P} = \frac{3}{2}^{+}$	
$J^P=0^+ \ J^P=1^+$	$D_{s0}^{*}(2317)$ $D_{s1}(2460)$	$\begin{array}{c} 2317.4 \pm 0.9 \\ 2459.3 \pm 1.3 \end{array}$	$J^P = 1^+$ $J^P = 2^+$	$D_{s1}(2536)$ $D_{s2}^{*}(2573)$	$\begin{array}{c} 2535.3 \pm 0.6 \\ 2572.4 \pm 1.5 \end{array}$

Nonleptonic decay ratios of D_s P-wave mesons:

• Factorization approximation:

- \rightarrow Matrix element of $B \rightarrow D^{(*)}D_{sI}^{(*)}$ as a product of two matrix elements:
 - i) The *B* weak transition into the $D^{(*)}$ mesons.

ii) The weak creation of the $c\bar{s}$ pair which makes the $D_{sJ}^{(*)}$ meson $\propto f_{D(*)}$.

Heavy quark limit:

i) PS effects are neglected: $R_{D0} = R_{D^*0} = \left| \frac{f_{D_{s0}^*(2317)}}{f_{D_s}} \right|^2$, $R_{D1} = R_{D^*1} = \left| \frac{f_{D_{s1}(2460)}}{f_{D_s^*}} \right|^2$.

ii)
$$f_{D_{s0}^*} = f_{D_{s1}}$$
 and $f_{D_s} = f_{D_s^*} \Rightarrow R_{D0} \approx R_{D1}$

iii) For P-wave $j_q = 1/2$ states \rightarrow decay constants very similar to those of D_s and D_s^* . For P-wave $j_q = 3/2$ states \rightarrow decay constants very small.

Ratios of order one for $D_{s0}^*(2317)$ and $D_{s1}(2460) \rightarrow$ in strong disagreement \downarrow We will concentrate in the influence of the effect of the finite c-quark mass

Introduction Constituent quark model CQM predictions on $D_s P$, wave mesons leptonic B decays into $D^{(*)}D^{(*)}_{s}$ final states sJ Summary

Table of Contents

Constituent quark model

CQM predictions on D_s P-wave mesons

A Nonleptonic *B* decays into $D^{(*)}D^{(*)}_{sJ}$ final states

Summary

< 回 > < 三 > < 三 >

Introduction Constituent quark model CQM predictions on $D_s \xrightarrow{P}$ wave mesons Nonleptonic B decays into $D^{(+)} \xrightarrow{P} f_n$ in al states sJ Summary

Goldstone-boson exchange potentials

QCD Lagrangian invariant under the chiral transformation

Chiral symmetry is spontaneously broken $\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - M(q^2) U^{\gamma_5} \right) \psi$

• Pseudo-Goldstone Bosons ($\vec{\pi}$, K_i and η_8)

$$egin{aligned} U^{\gamma_5} &= \exp\left(i\pi^{a}\lambda^{a}\gamma_5/f_{\pi}
ight) \ &\sim 1+rac{i}{f_{\pi}}\gamma^5\lambda^{a}\pi^{a}-rac{1}{2f_{\pi}^2}\pi^{a}\pi^{a}+\dots \end{aligned}$$

Constituent quark mass

$$M(q^2) = m_q F(q^2) = m_q \left[\frac{\Lambda^2}{\Lambda^2 + q^2} \right]^{1/2}$$

C.D. Roberts, arXiv:1109.6325v1 [nucl-th].

ヨトィヨト

Introduction Constituent quark model CQM predictions on $D_{s} \xrightarrow{P}$ wave mesons Nonleptonic B decays into $D^{(*)} \xrightarrow{D} \xrightarrow{S}$ final states sJ Summary

One-gluon exchange potential

- We take it into account through the one-gluon exchange (OGE) potential.
- The OGE is a standard color Fermi-Breit interaction obtained from the vertex Lagrangian:

$$\mathcal{L}_{\rm qqg} = i\sqrt{4\pi\alpha_s}\,\bar{\psi}\gamma_\mu\,\mathcal{G}^\mu_c\lambda^c\psi$$

• Effective scale dependent strong coupling constant:

$$\alpha_{s}(\mu) = \frac{\alpha_{0}}{\ln\left(\frac{\mu^{2} + \mu_{0}^{2}}{\Lambda_{0}^{2}}\right)}$$

Introduction **Constituent** quark model CQM predictions on $D_s = f_s$ wave mesons ileptonic *B* decays into $D^{(*)}D_s = J_s$

Confinement potential

LINEAR SCREENED POTENTIAL

$$V_{\rm CON}(r) = \left[-a_c(1-e^{-\mu_c r})+\Delta\right](\vec{\lambda}_i\cdot\vec{\lambda}_j)$$

• Flavor independent

•
$$r \to 0 \Rightarrow V_{\text{CON}}(r) \to (-a_c \mu_c r + \Delta) (\vec{\lambda}_i \cdot \vec{\lambda}_j)$$

•
$$r \to \infty \Rightarrow V_{\text{CON}}(r) \to (-a_c + \Delta)(\vec{\lambda}_i \cdot \vec{\lambda}_j)$$

Constituent quark model

CQM predictions on $D_{S} \xrightarrow{P}$ wave mesons Nonleptonic *B* decays into $D^{(*)} \xrightarrow{D^{(*)}}_{SJ}$ final states Summary

Some recent applications

Deuteron

	CQM	NijmII	Bonn B	Exp.
ϵ_d (MeV)	-2.2242	-2.2246	-2.2246	-2.224575
P_D (%)	4.85	5.64	4.99	-
$Q_d (\text{fm}^2)$	0.276	0.271	0.278	0.2859 ± 0.0003
$A_S ({\rm fm}^{-1/2})$	0.891	0.8845	0.8860	0.8846 ± 0.0009
A_D/A_S	0.0257	0.0252	0.0264	0.0256 ± 0.0004

Light mesons

(a)

э

Jorge Segovia et al., segonza@usal.es

Introduction Constituent quark model CQM predictions on D_5 P-wave mesons Nonleptonic B decays into $D^{(+)}D^{(+)}$ final states sJ Summary

Table of Contents

2 Constituent quark mode

CQM predictions on D_s P-wave mesons

Onleptonic *B* decays into $D^{(*)}D^{(*)}_{sJ}$ final states

5 Summary

< 回 > < 三 > < 三 >

Introduction Constituent quark model CQM predictions on D_5 P-wave mesons Nonleptonic B decays into $D^{(+)}_{SJ} D^{(+)}_{SJ}$ intal states S Summary

$D_{s0}^{*}(2317)$ and the 1-loop corrections to OGE

What is the mechanism that explains the lower mass of the $D_{s0}^{*}(2317)$ meson?

- Addition of the one-loop QCD corrections to the spin-dependent terms of the potential.
- There is a spin-dependent term which affects only to mesons with different flavor quarks.
 - Lakhina and E. S. Swanson, Phys. Lett. B 650, 159 (2007).

	Charmed-strange mesons							
	$j_q^P = 1/2^-$		$j_q^P = 1/2^+$		$j_q^P = 3/2^+$			
	0-	$1^ 0^+$ 1^+			1^{+}	2+		
This work (α_s)	1984	2110	2510	2593	2554	2591		
This work (α_s^2)	1984	2104	2383	2570	2560	2609		
Exp.	1969.0 ± 1.4	2112.3 ± 0.5	2318.0 ± 1.0	2459.6 ± 0.9	2535.12 ± 0.25	2572.6 ± 0.9		
		Charmed mesons						
	j_q^P	$= 1/2^{-}$	j_q^P =	$j_{q}^{P} = 1/2^{+}$		$j_{q}^{P} = 3/2^{+}$		
	0-	1-	0+	1^{+}	1^{+}	2+		
This work (α_s)	1896	2017	2516	2596	2466	2513		
This work (α_s^2)	1896	2014	2362	2535	2499	2544		
Exp.	1867.7 ± 0.3	2010.25 ± 0.14	2403 ± 38	2427 ± 36	2423.4 ± 3.1	2460.1 ± 4.4		

Our prediction:

The 0^+ states are more sensitive to the inclusion of the one-loop corrections.

Jorge Segovia et al., segonza@usal.es The nature of the orbitally excited charmed-strange mesons

Introduction Constituent quark model CQM predictions on $D_S \xrightarrow{P}$ wave mesons Nonleptonic B decays into $D^{(+)} D^{(+)}_{S} \xrightarrow{P}$ final states S

$D_{s1}(2460)$ and $D_{s1}(2536)$. The tetraquark coupling

What is the mechanism that explains the lower mass of the $D_{s1}(2460)$ meson?

- Possible molecular states.
- Tetraquark states.
- $c\bar{s}$ states in models with higher order corrections.
- Mixture of cs and csnn.
- COUPLING PRESCRIPTION J. Segovia et al., Phys. Rev. D 80, 054017 (2009).
 - Working in HQS limit:
 - Three different spin states for tetraquark: |01/2>, |11/2> and |13/2>. The first index denotes the spin of the nn pair and the second one the coupling with the sign.
 - ³P₀ model to select the dominant couplings:
 - The nn pair created is in a J = 0 state.
 - The coupling between D_s states and $|01/2\rangle$ tetraquark component is dominant.
 - This choice has several advantages:
 - It has the correct heavy quark limit.
 - It can reproduce the narrow width of the D_{s1}(2536) meson.
 - It is in agreement with the experimental situation which tells us that the prediction of the heavy quark limit is reasonable for the $j_q = 3/2$ states but not for the $j_q = 1/2$.

Introduction Constituent quark model CQM predictions on $D_5 P_*$ wave mesons Ionleptonic B decays into $D^{(+)} D^{(+)} D^{(+)}$ final states sJ Summary

 $D_{s1}(2460)$ and $D_{s1}(2536)$. The tetraquark coupling

Effective coupling between $c\bar{s}$ states and the tetraquark:

$$M = \begin{pmatrix} M_{3P_{1}} & C_{SO} & \sqrt{\frac{2}{3}}C_{S} \\ C_{SO} & M_{1P_{1}} & \sqrt{\frac{1}{3}}C_{S} \\ \sqrt{\frac{2}{3}}C_{S} & \sqrt{\frac{1}{3}}C_{S} & M_{c\bar{s}n\bar{n}} \end{pmatrix}$$

$M_{^{3}P_{1}}$	$2571.5{\rm MeV}$
M_{1P_1}	$2576.0{\rm MeV}$
M _{csnn}	$2841{ m MeV}$
C_{SO}	$19.6\mathrm{MeV}$
Cs	$224\mathrm{MeV}$

3

3 × < 3 ×

Eigenstates are:

M (MeV)	$S({}^{3}P_{1})$	$P({}^{3}P_{1})$	$S(^{1}P_{1})$	$P(^{1}P_{1})$	S(csnn)	P(csnn)
2459	_	55.7	_	18.8	+	25.5
2557	+	27.7	_	72.1	+	0.2
2973	+	16.6	+	9.1	+	74.3

The doublets D_{sJ} with $j_q = 1/2$, 3/2 from HQS:

$$\begin{array}{rcl} |1/2,0^{+}\rangle & = & |^{3}P_{0}\rangle & & |3/2,1^{+}\rangle & = & \sqrt{\frac{1}{3}}|^{3}P_{1}\rangle - \sqrt{\frac{2}{3}}|^{1}P_{1}\rangle \\ |1/2,1^{+}\rangle & = & \sqrt{\frac{2}{3}}|^{3}P_{1}\rangle + \sqrt{\frac{1}{3}}|^{1}P_{1}\rangle & |3/2,2^{+}\rangle & = & |^{3}P_{2}\rangle \end{array}$$

Introduction Constituent quark model CQM predictions on D_s P-wave mesons Nonleptonic B decays into $D_s^{(+)} D_s^{(+)}$ final states S_J Summary

 $D_{s1}(2460)$ and $D_{s1}(2536)$. The tetraquark coupling

Calculation of the following physical observables:

$$\begin{split} &\Gamma(D_{s1}(2536)^+) = \Gamma(D^{*0}K^+) + \Gamma(D^{*+}K^0) \\ &R_1 = \frac{\Gamma(D_{s1}(2536)^+ \to D^{*0}K^+)}{\Gamma(D_{s1}(2536)^+ \to D^{*+}K^0)} \\ &R_2 = \frac{\Gamma_S(D_{s1}(2536)^+ \to D^{*+}K^0)}{\Gamma(D_{s1}(2536)^+ \to D^{*+}K^0)} \\ &R_3 = \frac{\Gamma(D_{s1}(2536)^+ \to D^+\pi^-K^+)}{\Gamma(D_{s1}(2536)^+ \to D^{*+}K^0)} \end{split}$$

• D_{s1}(2536) Eigenstate:

Mass (MeV)	Г (MeV)	R_1	R_2	$R_{3}(\%)$
2557	0.46	1.31	0.66	4.00
Exp.	1.03	1.27	0.72	3.27

As the DK decay is zero the total width would be mainly given by the D*K channel and is in the order of the experimental value. $\begin{array}{c} & \text{Introduction} \\ & \text{Constituent quark model} \\ \hline \textbf{CQM predictions on } D_{S} \xrightarrow{P} \text{wave mesons} \\ & \text{Nonleptonic } \mathcal{B} \text{ decays into } D^{(+)} D^{(+)} \xrightarrow{P} \text{ind} \text{ states} \\ & \text{sJ} \qquad & \text{Summary} \end{array}$

Semileptonic $B(B_s)$ decays into $D^{**}(D_s^{**})$

- Different collaborations have recently reported semileptonic B decays into orbitally excited charmed mesons.
- The theoretical analysis of these data offers the possibility for a stringent test of meson models.
- Include a weak decay of the B meson and a strong decay of the D meson.

Weak decays:

- Matrix elements \Rightarrow parametrized in terms of form factors.
- At the quark level \Rightarrow light quark is an spectator.
- We follow references bellow:
 - E. Hernández et al., Phys. Rev. D 74, 074008 (2006).
 - M.A. Ivanov et al., Phys. Rev. D 73, 054024 (2006).

Strong decays:

- The ³P₀ decay model.
- The microscopic decay model.

Semileptonic B_s decays into D_s^{**}

	Experiment $(\times 10^{-3})$	The (×1	eory 0 ⁻³)
$D_{s0}^{*}(2317)$			
${\cal B}(B^0_s o D^*_{s0}(2317)^-\mu^+ u_\mu)$	-	4.4	282
D _{s1} (2460)			
$\mathcal{B}(B^0_s o D_{s1}(2460)^-\mu^+ u_\mu)$	-	1.74 -	- 5.70
D _{s1} (2536)		³ P ₀	Mic.
${\cal B}(B^0_s o D_{s1}(2536)^-\mu^+ u_\mu){\cal B}(D_{s1}(2536)^- o D^{*-}ar{K}^0)$	2.4 ± 0.7	2.0491	2.2397
D _{s2} [*] (2573)		³ P ₀	Mic.
${\cal B}(B^0_s o D^*_{s2}(2573)^-\mu^+ u_\mu){\cal B}(D^*_{s2}(2573)^- o D^-ar K^0)$	-	1.7047	1.7680
$\mathcal{B}(B^0_s o D^*_{s2}(2573)^- \mu^+ u_\mu) \mathcal{B}(D^*_{s2}(2573)^- o D^{*-} ar{K}^0)$	-	0.1769	0.1136
$\mathcal{B}(B^0_s o D^*_{s2}(2573)^- \mu^+ u_\mu) \mathcal{B}(D^*_{s2}(2573)^- o D^{(*)-} \bar{K}^0)$	-	1.8816	1.8816

(日) (同) (三) (三)

= 990

Introduction Constituent quark model CQM predictions on $D_s \xrightarrow{P}$ wave mesons Nonleptonic *B* decays into $D^{(+)} \xrightarrow{D} \xrightarrow{D} \xrightarrow{T}$ final states s Summary

Table of Contents

2 Constituent quark model

3 CQM predictions on D_s P-wave mesons

Nonleptonic *B* decays into $D^{(*)}D^{(*)}_{sl}$ final states

5 Summary

A B M A B M

- T

Introduction Constituent quark model CQM predictions on D_s for vare mesons Nonleptonic *B* decays into $D^{(+)}$ $D^{(+)}$ final states sJ Summary

Remainder

These decays provide valuable information that makes possible to check the structure of the $D_{s0}^*(2317)$, $D_{s1}(2460)$ and $D_{s1}(2536)$ mesons

Heavy Quark Symmetry predictions

- Ratios of order one for $D_{s0}^*(2317)$ and $D_{s1}(2460) \Rightarrow$ in strong disagreement.
- Ratios very small for $D_{s1}(2536) \Rightarrow$ follow the expectations.

The disagreement \Rightarrow an indication that $D_{s0}^*(2317)$ and $D_{s1}(2460)$ mesons could have a more complex structure

Expressions of the decay widths taking finite c-quark mass

• For
$$D_{sJ}^{(*)}$$
 a pseudoscalar or scalar meson:

$$\Gamma = \frac{G_F^2}{16\pi m_B^2} |V_{cs}|^2 a_1^2 \frac{\lambda^{1/2} (m_B^2, m_{D^{(*)}}^2, m_{D_{sJ}}^2)}{2m_B} m_{D_{sJ}^{(*)}}^2 f_{D_{sJ}^{(*)}}^2 f_{tt}^{(*)} \mathcal{H}_{tt}^{B \to D^{(*)}} (m_{D_{sJ}^{(*)}}^2)$$
• For $D_{sJ}^{(*)}$ a vector or axial-vector meson:

$$\Gamma = \frac{G_F^2}{16\pi m_B^2} |V_{cb}|^2 |V_{cs}|^2 a_1^2 \frac{\lambda^{1/2} (m_B^2, m_{D^{(*)}}^2, m_{D_{sJ}^{(*)}}^2)}{2m_B} m_{D_{sJ}^{(*)}}^2 f_{D_{sJ}^{(*)}}^2 \mathcal{H}_{tt}^{B \to D^{(*)}} (m_{D_{sJ}^{(*)}}^2)$$

$$\times \left[\mathcal{H}_{+1+1}^{B \to D^{(*)}} (m_{D_{sJ}^{(*)}}^2) + \mathcal{H}_{-1-1}^{B \to D^{(*)}} (m_{D_{sJ}^{(*)}}^2) + \mathcal{H}_{00}^{B \to D^{(*)}} (m_{D_{sJ}^{(*)}}^2) \right]$$

Introduction Constituent quark model CQM predictions on $D_{s} \xrightarrow{P}$ vare mesons Nonleptonic *B* decays into $D^{(+)} \xrightarrow{D} \xrightarrow{P}$ final states S Summary

Discussion on the phase space

ł

• Using experimental masses we obtain the ratios:

$$D_{s0}^{*}(2317) \qquad D_{s1}(2460) \qquad D_{s1}(2536)$$

$$R_{D0} = 0.9008 \times \left| \frac{f_{D_{s0}^{*}(2317)}}{f_{D_{s}}} \right|^{2} \qquad R_{D1} = 0.7040 \times \left| \frac{f_{D_{s1}(2460)}}{f_{D_{s}^{*}}} \right|^{2} \qquad R_{D1'} = 0.6370 \times \left| \frac{f_{D_{s1}(2536)}}{f_{D_{s}^{*}}} \right|^{2}$$

$$R_{D^{*}0} = 0.7166 \times \left| \frac{f_{D_{s0}^{*}(2317)}}{f_{D_{s}}} \right|^{2} \qquad R_{D^{*}1} = 1.0039 \times \left| \frac{f_{D_{s1}(2460)}}{f_{D_{s}^{*}}} \right|^{2} \qquad R_{D^{*}1'} = 0.9923 \times \left| \frac{f_{D_{s1}(2536)}}{f_{D_{s}^{*}}} \right|^{2}$$

The double ratio does not depend on decay constants:

$$\frac{R_{D^*0}}{R_{D0}} = \begin{cases} 0.7955 & R_{D^*1} \\ 1.50 \pm 0.75 & R_{D1} \end{cases} = \begin{cases} 1.4260 & R_{D^*1'} \\ 1.32 \pm 0.43 & R_{D1'} \end{cases} = \begin{cases} 1.5578 \\ 0.90 \pm 0.27 \end{cases}$$

- The quality of the experimental results does not allow to be very conclusive as to the goodness of the factorization approximation.
- But one can conclude that phase space and weak matrix element corrections cannot be ignored.

Introduction Constituent quark model CQM predictions on D_s P wave mesons Nonleptonic B decays into $D^{(+)}D^{(+)}_s$ final states S Summary

Discussion on the decay constants

Approach	f_D (MeV)	f_{D_s} (MeV)	f_{D_s}/f_D
Ours	297.019 ^(†)	416.827(†)	1.40 ^(†)
	214.613 ^(‡)	286.382 ^(‡)	1.33 ^(‡)
Experiment	206.7 ± 8.9	257.5 ± 6.1	1.25 ± 0.06
Approach	f_{D^*} (MeV)	$f_{D_s^*}$ (MeV)	$f_{D_{s}^{*}}/f_{D^{*}}$
Ours	247.865 ^(†)	329.441 ^(†)	1.33 ^(†)
QL (Italy)	234	254	$1.04 \pm 0.01^{+2}_{-4}$
QL (UKQCD)	$245 \pm 20^{+0}_{-2}$	$272 \pm 16^{+0}_{-20}$	1.11 ± 0.03

- Decay constants of 3S_1 mesons agree.
- Decay constants of 1S_0 mesons are large:
- i) A spin-spin contact hyperfine interaction regularized at r = 0.
- ii) Hyperfine splittings in the different flavor sectors are well reproduced.
- iii) Most of the physical observables are insensitive to the regularization \rightarrow BUT \rightarrow those related with annihilation processes are affected.
- iv) The effect is:
 - Negligible for higher partial waves.
 - Small in the ³S₁ channel.
 - Sizable in the ${}^{1}S_{0}$ channel.

We will use for the pseudoscalar constant the experimental value.

	f _D (MeV)	$\sqrt{M_D} f_D$ (GeV ^{3/2})
$D_{s0}^{*}(2317)$	118.706	0.181
$D_{s1}(2460)$	165.097	0.259
$D_{s1}(2536)$	59.176	0.094

Comments

• From experiment:

$$\begin{split} f_{D_{s0}^*(2317)} &\sim 1/3 \, f_{D_s} \\ f_{D_{s0}^*(2317)} &\sim f_{D_{s1}(2460)} \\ f_{D_{s1}(2536)} &\to \text{small} \end{split}$$

• Our results:

$$\begin{split} f_{D_{s0}^*(2317)}/f_{D_s} &= 0.36 \\ f_{D_{s0}^*(2317)} &\sim 0.72 f_{D_{s1}(2460)} \\ f_{D_{s1}(2536)} &= 59.176 \, \mathrm{MeV} \end{split}$$

Introduction Constituent quark model CQM predictions on B_s p_s^{+} wave mesons Nonleptonic *B* decays into D^{+} p_s^{+} final states s_s^{-} Summary

Our results

Ratios

	$X \equiv D_{s0}^{*}(2317)$		$X \equiv D$	$X \equiv D_{s1}(2460)$		D _{s1} (2536)
	The.	Exp.	The.	Exp.	The.	Exp.
$\mathcal{B}(B \to DX)/\mathcal{B}(B \to DD_s)$	0.19(*)	0.10 ± 0.03	-	-	-	-
$\mathcal{B}(B \to D^*X)/\mathcal{B}(B \to D^*D_s)$	0.15(*)	0.15 ± 0.06	-	-	-	-
$\mathcal{B}(B \to DX)/\mathcal{B}(B \to DD_s^*)$	-	-	$\begin{bmatrix} 0.176^{(1)} \\ 0.177^{(2)} \end{bmatrix}$	$\textbf{0.44} \pm \textbf{0.11}$	$\begin{bmatrix} 0.071^{(1)} \\ 0.021^{(2)} \end{bmatrix}$	$\textbf{0.049} \pm \textbf{0.010}$
$\mathcal{B}(B \to D^*X)/\mathcal{B}(B \to D^*D^*_s)$	-	-	$\begin{bmatrix} 0.251^{(1)} \\ 0.252^{(2)} \end{bmatrix}$	0.58 ± 0.12	$\begin{bmatrix} 0.110^{(1)}\\ 0.032^{(2)} \end{bmatrix}$	$\textbf{0.044} \pm \textbf{0.010}$

Comments

- Results close to or within the experimental error bars for the $D_{s0}^{*}(2317)$ meson.
 - 1-loop corrections to OGE has been introduced.
 - (*) We are using the experimental value for f_{D_s} .
- The enhancement of the $j_q = 3/2$ component of the $D_{s1}(2536)$ meson gives rise to ratios in better agreement with experiment.
 - (1) Without coupling to non- $q\bar{q}$ degrees of freedom ightarrow second ratio in disagreement.
 - (2) With coupling to non- $q\bar{q}$ degrees of freedom $\rightarrow D_{s1}(2536)$ remains almost a $q\bar{q}$.
- The $D_{s1}(2460)$ meson could have a sizable non- $q\bar{q}$ component.
 - (1) Without coupling to non- $q\bar{q}$ degrees of freedom \rightarrow ratios in disagreement.
 - (2) With coupling to non- $q\bar{q}$ degrees of freedom \rightarrow ratios in disagreement \rightarrow We have not yet calculated the contribution of the non- $q\bar{q}$ degrees of freedom.

Introduction Constituent quark model CQM predictions on $D_{s} P_{s}$ wave mesons Nonleptonic B decays into $D^{(+)} D^{(+)} D^{(+)}$ final states sJ Summary

Table of Contents

2 Constituent quark model

3 CQM predictions on D_s P-wave mesons

A Nonleptonic *B* decays into $D^{(*)}D^{(*)}_{sJ}$ final states

Summary

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction Constituent quark model CQM predictions on $D_s P_s$ wave mesons Nonleptonic B decays into $D^{(+)}D^{(+)}$ final states sJ Summary

Summary

- Ratios of nonleptonic B decays into double charmed mesons have been recently reported by the Belle Collaboration.
- The strong disagreement found between the heavy quark limit predictions and the experimental data motivates the introduction of the finite c-quark mass effects.
- We have performed a calculation of the ratios working within the framework of the constituent quark model and in the factorization approximation.

• The *D*_{s0}(2317) meson:

- The mass is lowered towards the experimental value with the inclusion of the 1-loop corrections to the OGE potential.
- We obtain ratios compatible with the experimental data.
- Our results indicate that this meson could be described as a canonical $c\bar{s}$ state.
- The *D*_{s1}(2536) meson:
 - We incorporate the non- $q\bar{q}$ degrees of freedom in the $J^P = 1^+$ channel.
 - This meson remains almost a pure $q\bar{q}$ state and its $j_q = 3/2$ component is enhanced.
 - Correct ratios for this meson are predicted
- The *D*_{s1}(2460) meson:
 - Has a sizable non-qq component.
 - The non- $q\bar{q}$ contribution has not been calculated.
 - The ratios are a factor 2 below the experimental ones.

きょうきょう