The frontiers of the virtual photon program@MAM

ISION

Concettina Sfienti

Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

The MAMI/A1 Legacy

D. Watts "The Crystal Ball programme@MAMI" Tue. Jun 5th

The MAMI/A1 Legacy

<u>Coincidence</u> and <u>polarization</u> meas.

KAOS spectrometer

Hadron Physics at Low Energies

Effective laboratory for non-perturbative QCD

Fundamental Structure of Matter

Charge and magnetism distributions Spin distribution Quark momentum and flavour distribution Polarizabilities Strangeness Content

Theoretical Tools:

pQDC, OPE, Lattice QCD, ChPT

The Beauty of the Electromagnetic Probe

Effective laboratory for non-perturbative QCD

Fundamental Structure of Matter

Charge and magnetism distributions Spin distribution Quark momentum and flavour distribution Polarizabilities Strangeness Content

Theoretical Tools:

pQDC, OPE, Lattice QCD, ChPT

Clean probe of hadron structure

- > Electron-vertex well-known from QED
- > One-photon exchange dominates
- > Higher-order exchange diagrams are suppressed
- > Vary the wavelength of the probe to view deeper inside the hadron

Form Factors are ethernal"

" Diamonds are for ever...

What can we learn? Low-Q ⇔ Long range structure How big is the proton? Is there evidence for a pion cloud?

2*r*_{confinement}

Form factors from elastic ep scattering

Form Factors from Elastic ep scattering

Cross section for one photon exchange

(Rosenbluth-cross section + Separation at constant Q²)

✓ Separated G_E(Q²) and G_M(Q²)
★ but contribution from two photon exchange (TPE)

Form Factors from Elastic ep scattering

... as always in physics: What accuracy can be reached????

M. Distler - 501. Heraeus Seminar - March 2012 - Bad Honnef, Germany

The latest MAMI measurement

The experiment designed for ... high precision by redundancy

- Statistical precision σ < 0.1%
- $\delta\theta < 0.5$ mrad vertical and horizontal
- Control of luminosity and systematic errors

All quantities measured by more than one method

Rosenbluth with a twist

"Super-Rosenbluth Separation": fit of form factor models **DIRECTLY to cross sections**

• All Q² and ε data are used in one fit • No projection to constant Q² → no limit of kinematics • One "estimator" → stat. theory "robust estimator" 1.04 Borkowski et al. [15] [13] 1.03 [2] H Janssens et al. H Simon et al. H Murphy et al. [16] 1.02 Price et al. G_E/G_{std. dipole} 1.01 0.99 0.98 0.97 0.96

The Radius Puzzle

7

5

3

2

0 L

49.75

Delayed / prompt events (10⁻⁴)

7

Delayed / prompt events (10⁻⁴)

3

2

0

49.75

6 F

CODATA-06

49.8

H₂O calibration

e-p scattering

Discrepancy is between muonic and electronic measurements

INSPIRE more than 50 citations

Exotic particles, contribution to the Lamb shift in µp, higher Zemach moments, Two-Photon-Exchange, structure corrections to hyperfine splitting, radiative corrections, [...]

still an unresolved problem

Known problems for extrapolation Q² → 0 Initial State Radiation (MAMI)

Known problems for extrapolation Q² → 0 Initial State Radiation (MAMI)

Muonic Lamb shift μD, μ-³He, μ-⁴He measurements (PSI)

New G_{Ep} measurements

Extension up to 1.6 GeV for proton and very low Q² for light nuclei (MAMI)

Few Nucleon Systems Form Factor

Neutron form factor

S. Schlimme PhD, JGU, Mainz (2012)

No **FREE** neutron target

use light nuclei (deuteron)

M. Garcon, J. W. Van Orden, Adv. Nucl. Phys. 26, 293 (2001).

Resolution and Consistency

NEW dedicated n-DET WIDE range Q²≈ 0.2 to 1.5 GeV²/c²

The Challenge: "Describing complexity in terms of fundamental interactions"

NuPECC Long Range Plan

Linking QCD to many body systems

Linking QCD to many body systems

Strangeness Nuclear Physics

- **O** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy

Strangeness Nuclear Physics @ MAMI

- **1** Hyperons are NOT Pauli-blocked
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy

Electroproduction $Z(e,e',K^+)_{\Lambda}(Z-1)$

	1	2	3	4	5	6	7	8	9	10
1	$^3_{\Lambda} H$	$^{4}_{\Lambda}H$	⁵∧H	$^{6}_{\Lambda}H$	$^7_{\Lambda}H$	⁸ ∧H				
2	⁴ ∧He	5∧He	⁶ ∧He	⁷ ∧He	⁸ ∧He	⁹ ∧He				
3		⁶ ∧Li	⁷ ∧Li	⁸ ∧Li	⁹ ∆Li	¹⁰ ⊥i	$^{11}_{\Lambda}\text{Li}$	¹² _A Li		
4		²∧Be	⁸ _{^8} Be	⁹ ∧Be	¹⁰ ∧Be	¹¹ Be	¹² _A Be	¹³ ∧Be	¹⁴ ∧Be	¹⁵ ∧Be
5			⁹ ∧B	¹⁰ ∧B	11AB	$^{12}_{\Lambda}B$	¹³ _A B	14 B	$^{15}_{\Lambda} B$	¹⁶ ΛΒ
6			^10 ^C	$^{11}_{\Lambda}\text{C}$	^12 ^C	¹³ ^	¹⁴ ∧C	¹⁵ ΛC	¹⁶ С	17 ^C
7				$^{12}_{\Lambda} N$	$^{13}_{\Lambda}N$	$^{14}_{\Lambda}N$	$^{15}_{\Lambda}N$	$^{16}_{\Lambda}N$	$^{17}_{\Lambda} N$	¹⁸ Λ
8				13 O	^14 ^	15 A	¹⁶ ΛΟ	17 ^0	¹⁸ O	19 ^0

Strangeness Nuclear Physics @ MAMI

- **O Hyperons are NOT Pauli-blocked**
- 2 Requires the knowledge of YN, YY, ...
- **3** Spectroscopy

Electroproduction $Z(e,e',K^+)_{\Lambda}(Z-1)$

8				13 O	^14 ^0	15 A	¹⁶ ΛΟ	17 ^10	¹⁸ O	¹⁹ O
7			5 - 5	$^{12}_{\Lambda} N$	$^{13}_{\Lambda} N$	$^{14}_{\Lambda}N$	$^{15}_{\Lambda}N$	$^{16}_{\Lambda}N$	$^{17}_{\Lambda}N$	$^{18}_{\Lambda}N$
6			10 C	11 ^1C	¹² ^	^13 ∧C	^14 ^C	¹⁵ ΛC	16 ^C	17 ^C
5			⁹ ∧B	¹⁰ ∧B	11AB	$^{12}_{\Lambda}B$	¹³ _A B	¹⁴ ∧B	$^{15}_{\Lambda} \text{B}$	¹⁶ ΛΒ
4		⁷ ∧Be	⁸ _{^8} Be	⁹ ∧Be	¹⁰ Be	¹¹ Be	¹² _^ Be	¹³ _A Be	¹⁴ ∧Be	¹⁵ ∧Be
3		⁶ ∧Li	⁷ ∧Li	⁸ _{^8} Li	⁹ ∆Li	¹⁰ ⊥i	$^{11}_{\Lambda}\text{Li}$	¹² _A Li		
2	⁴ ∧He	5∧He	⁶ ∧He	⁷ ∧He	⁸ ∧He	⁹ ∧He				
1	$^{3}_{\Lambda}H$	$^{4}_{\Lambda}H$	₅∧H	⁶ _A H	$^7_{\Lambda} H$	⁸ ∧H			_	
	1	2	3	4	5	6	7	8	9	10

A two-fold way

2 Requires the knowledge of YN, YY, ...

Precision is the key issue

2 Requires the knowledge of YN, YY, ... Precision is the key issue

AN Charge Symmetry Breaking?

b EFT w/o strangeness agrees with data within $\approx 2\%$

Epelbaum, Krebs, Lee, Meißner PRL 104 (10) 142501

2 Requires the knowledge of YN, YY, ... Precision is the key issue

AN Charge Symmetry Breaking?

EFT w/o strangeness agrees with data within ≈ 2% Epelbaum, Krebs, Lee, Meißner PRL 104 (10) 142501

 π^{-}

\blacksquare High resolution decay π spectroscopy

12**(**

⁴He

¹² AB*

 ${}^{4}{}_{\Lambda}H$

Λ

Access to variety of light and exotic hypernuclei

Weak mesonic two-body decay \rightarrow mono-energetic π \checkmark Resolution (δB_{Λ}) limited by π^{-} momentum resolution

2 Requires the knowledge of YN, YY, ... Precision is the key issue

AN Charge Symmetry Breaking?

EFT w/o strangeness agrees with data within ~ 2% Epelbaum, Krebs, Lee, Meißner PRL 104 (10) 142501

Pilot experiment (2011)

- Zero-degree kaon tagging by KAOS
- High resolution spectrometers for π detection ($\Delta p/p \le 10^{-4}$ FWHM)
- FPGA trigger setups for maximizing background suppression

The **frontiers** of the virtual photon program @ MAMI

Hadron physics plays a central and connecting role

Stay tuned for Meson 2014:

Form factors: proton vs. d (June 2012) Magnetic and electric neutron FF measurements ISR measurements at very low Q² Nucleon polarizabilities Structure studies of few body systems w/o and w/ strangeness

The Low Energy Frontier of the Standard Model

Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Concettina Sfienti

The **frontiers** of the virtual photon program @ MAMI

Hadron physics plays a central and connecting role

Stay tuned for Meson 2014:

Form factors: proton vs. d (June 2012) Magnetic and electric neutron FF measurements ISR measurements at very low Q² Nucleon polarizabilities Structure studies of few body systems w/o and w/ strangeness

.. and for the ...

The Low Energy Frontier of the Standard Model

MarkSide

Concettina Sfienti

Probing Dark Forces @ GeV Scale

Dark Photon Light weakly coupled

U(1) gauge boson

N. Arkani-Hamed, et al., Phys. Rev. D 79 (2009) 015014

...it explains ... terrestrial anomalies (DAMA, CDMS, XENON) satellite anomalies (PAMELA, FERMI)

(g-2)_µ anomaly M. Pospelov, Phys. Rev. D80 (2009) 095002

Proton Radius Puzzle

D. Tucker-Smith and I. Yavin Phys. Rev. D83 (2011) 101702

Probing Dark Forces @ GeV Scale

Dark Photon

Light weakly coupled U(1) gauge boson

N. Arkani-Hamed, et al., Phys. Rev. D 79 (2009) 015014

...it explains ... terrestrial anomalies (DAMA, CDMS, XENON) satellite anomalies (PAMELA, FERMI)

(g-2)_µ anomaly M. Pospelov, Phys. Rev. D80 (2009) 095002

Proton Radius Puzzle

D. Tucker-Smith and I. Yavin Phys. Rev. D83 (2011) 101702

PHYSICAL REVIEW D 80, 075018 (2009) New fixed-target experiments to search for dark gauge forces

James D. Bjorken,¹ Rouven Essig,¹ Philip Schuster,¹ and Natalia Toro² ¹Theory Group, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA ²Theory Group, Stanford University, Stanford, California 94305, USA (Received 20 July 2009; published 28 October 2009)

World wide effort (CERN, DESY, JLAB, MAMI, all e⁺e⁻ colliders, ...)

Prediction are testable: Large cross section in leptons

Search for the Dark Photon @ MAMI

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Bump Hunt: Quasi-photoproduction off ¹⁸¹Ta target

Search for the Dark Photon @ MAMI

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Bump Hunt: Quasi-photoproduction off ¹⁸¹Ta target

→ Fight background

- ... with high intensity ...
- ... and resolution.

Feasibility: Background (within 1%) First exclusion limits 10⁻³

4 days beam time!!

APEX: S. Abrahamyan et al., Phys. Rev. Lett. 107 (2011) 191804 KLOE: F. Archilli et al., Phys. Lett. B. 706 (2012) 251

....the search continues ... new ε/m_γ scan March 2012

The Low Energy Frontier of the Standard Model

Concettina Sfienti Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Concettina Sfienti Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

Form Factors from Elastic ep scattering

Cross section for one photon exchange

(Rosenbluth-cross section + Separation at constant Q²)

Polarization transfer reaction: Measurement of recoil polarization \checkmark Little contribution from TPE (?) \Rightarrow Only ratio $G_E(Q^2)/G_M(Q^2)$ + difficult below $Q^2 \approx 0.2 \ GeV^2/c^2$

Cross sections/standard Dipole

Cross sections + spline fit

Form Factor results: G_E/G_M ratio

Jan C. Bernauer et al., Phys. Rev. Lett. 105, 242001 (2010)

X. Zhan et al., arXiv:1102.0318 J. Arrington et al., Phys. Rev. C76 (2007) 035205

Comments on TPE

a)

GPD

b)

GPD

0.2

hadronic

0.4

e

0.8

1.0

0.6

hadronic

0.76

0.72

0.68

0.64

0.60

1.04

1.02

1.00

0.98

0.0

22

 $/P_1^{Born}$

 Two-photon exchange (TPE) with and w/o excited intermediate states: Exchange of two hard photons

Still not reliable and highly debated

Figure shows a recent experimental result from JLab.

Rosenbluth vs. Polarization Transfer

Different results from different experimental techniques

\Rightarrow 2-Photon Exchange

M. K. Jones et al., Phys. Rev. Lett. 84, 1398 (2000), , O. Gayou et al., Phys. Rev. Lett. 88, 092301 (2002)

* I. A. Qattan et al., Phys. Rev. Lett. 94, 142301 (2005)

Recent data on polarization transfer

• Discrepancy at high Q^2 Rosenbluth \leftrightarrow Polarization transfer

• High quality data not yet consistent at low Q^2

Search for the Dark Photon @ MAMI

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Bump Hunt: Quasi-photoproduction off ¹⁸¹Ta target

→ Fight background

Exclusion limits

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

- Confidence interval by Feldman-Cousins algorithm
- Model" for Background-subtraction: average of 3 Bins left and right of central bin
- Resolution $\delta m < 500 \, \text{keV} = \text{bin width}$
- Averaging (mean of 10 bins) only for "subjective judgment"

Improved model

H. Merkel et al., Phys. Rev. Lett. 106 (2011) 251802

Full Simulation

- Model: Coherent electroproduction production off heavy nucleus
- Q.E.D., nuclear form factor, coherent sum of all contributions, radiation corrections, ...

 \Rightarrow Describes data within a few percent

Limitation of the experiment

 100μ A beam current for 20 min on 0.05 mm ¹⁸¹Ta target (melting point: 3017 °C):

- Air activation
- Optimization of kinematics
- Target cooling
- Shielding

 \Rightarrow 1 order of magnitude higher count rates possible

Hunting program

O Pair production on heavy target $\varepsilon > 4 \cdot 10^{-4}$

O Low energy – high current $m_{\gamma'} < 50 \text{ MeV}/c^2$

③ Finite production vertex $10^{-6} < \varepsilon < 10^{-4}$

Sensitivity to shorter decay length Beam stabilization, shielding, target cooling

The Intensity Frontier...

Access to small mass region:

Low energy – high current accelerator Minimize multiple scattering by <u>gas target</u> <u> 4π detector @ 200 MHz</u> with high resolution DarkLight (JLab FEL), MESA at Mainz APEX: S. Abrahamyan et al., Phys. Rev. Lett. 107 (2011) 191804 KLOE: F. Archilli et al., Phys. Lett. B. 706 (2012) 251