

Standard and Exotic Hadrons

2

- Longstanding dispute in light meson spectroscopy if exotic states exist (too many scalar states?)
- No convincing experimental proofs for existence of elusive pentaquarks
- Recent discoveries in heavy quark states have revived hopes for conclusive proofs for existence of exotic mesons

3

- Discovered by Belle in 2003 at e⁺e⁻ B-factory in B⁺ \rightarrow X(3872)K⁺, X(3872) \rightarrow J/ $\psi \pi^{+}\pi^{-}$
- Confirmed by CDF and D0 in 2004 at Tevatron, mostly prompt (~84%) production pp→X(3872)+...
- Also observed by BaBar in 2005
- Its mass and decay modes disfavor a standard cc state.
- DD^{*} molecule, tetraquark, hybrid...?
- Even 9 years after the discovery some basic experimental questions are not answered:
 - Is its mass below the $D\overline{D}^*$ threshold?
 - Is its J^{PC}=1⁺⁺ or 2⁻⁺ ?

- Prompt production and orders of magnitude larger B production rates
- Advantages vs central detectors at LHC or Tevatron:
 - Large trigger bandwidth totally devoted to heavy flavor physics; higher trigger efficiencies
 - Can identify and trigger on lower p_T (di)muons
 - K/ π separation
 - Larger production rates than at Tevatron

The statistical error on the mass measurement from 2010 data not competitive yet, but the systematic error is small.

Already have 1 fb⁻¹ collected in 2011. Expected statistical error ~0.1 MeV. Systematics ? Better measurement of $M(D^0)+M(D^{0*})$ also needed.

X(3872) production

- X(3872) production cross-section measured at Tevatron:
 - Bignamini et al PRL103, 162001 (2009)
 - orders of magnitude too large to be a DD* molecule
 - Artoisenet, Braaten PRD81, 114018 (2010); PRD83, 014019 (2011):
 - can be reconciled with the molecular model when DD^{*} rescattering is considered
 - they also predicted X(3872) pp $\sigma \times BR(X(3872) \rightarrow J/\psi \pi^+\pi^-)$ at LHC scaling from the measurement at Tevatron using NRQCD approach

6

- Preliminary CMS results based on 2010 data (0.04 fb⁻¹):
 - Measure σ x BR ratio between
 X(3872) and ψ(2S) (p_T>8 GeV,
 |y|<2.2) : 0.087±0.017±0.009
 - Similar to CDF 2004 signal yield ratio: 0.10±0.02
 - no absolute $\sigma x BR$ measurement

X(3872) production σ measured at LHCb

LHCb Eur. Phys. J. C72, 1972 (2012), arXiv:1112.5310

- Use smaller fiducial region:
 - -2.5 < y < 4.5 and $5 < p_T < 20 \text{ GeV}$
 - With well understood acceptance corrections
 - Reduces the signal yield by 30%

$\begin{aligned} \sigma(pp \rightarrow X(3872) + anything) \ BR(X(3872) \rightarrow J/\psi\pi^+\pi^-) \\ = 4.7 \pm 1.1 \pm 0.7 \ nb \end{aligned}$

Smaller than predicted for this fiducial region by Artoisenet-Braaten: 13.0 ± 2.7 nb

(error from experimental inputs only, theoretical uncertainty?)

With $1 fb^{-1}$ expect determination of prompt and B-production fractions vs p_T

- With selection optimized to X(3872) up to 300 events in 1 fb⁻¹ (~2x Belle's signal statistics)
- Analysis of angular correlations to probe J^{PC} in progress

- With more data plan multidimensional amplitude analysis in $M(J/\psi \varphi)$ vs $M(\varphi K^{\scriptscriptstyle +})$ vs angles

Summary

- LHCb results on inclusive X(3872) using 2010 data:
 - Measured mass consistent with, but not competitive yet, with the measurements by CDF and Belle.
 - Good efficiency, mass resolution and S/B. Potential to do the best mass measurement with the 2011 data.
 - The measured cross-section somewhat lower than predicted by Artoisenet-Braaten from the Tevatron data.
 - Will determine long-livetime / prompt ratio with the 2011 data
- Worlds best signal statistics for B⁺ \rightarrow X(3872)K⁺, X(3872) \rightarrow J/ $\psi\pi^{+}\pi^{-}$ in the 2011 data:
 - J^{PC} determination and BR measurement in progress
- LHCb search for X(4140) in B⁺ \rightarrow X(4140)K⁺, X(4140) \rightarrow J/ $\psi \phi$:
 - The most sensitive measurement to date
 - Don't find evidence for this state in 2.4 σ disagreement with the CDF
- Other work in progress:

нср

- We have the worlds best statistics for $B^0 \rightarrow \psi(2S)\pi^+K^-$. Probe for Z(4430)⁺ $\rightarrow \psi(2S)\pi^+$ (claimed by Belle, but not confirmed by BaBar).

