GlueX: Photoproduction of Hybrid Mesons

Hybrid mesons – masses and decay modes Expectations from LQCD and models Photoproduction and GlueX

Elton S. Smith, Jefferson Lab for the GlueX Collaboration 12th International Workshop on Meson Production, Properties and Interaction

Quarks are confined inside colorless hadrons

Quarks combine to "neutralize" color force

Allowed by QCD, but do they exist in nature?

Normal Mesons – $q\bar{q}$ color singlet bound states

Spin/angular momentum configurations & radial excitations generate the known spectrum of light quark mesons.

Starting with **u** - **d** - **s** we expect to find mesons grouped in nonets - each characterized by a given J, P and C.

K₁
$$I^{G}(J^{PC}) = \frac{1}{2} (1^{-})$$

 $\pi_{1} I^{G}(J^{PC}) = 1^{-}(1^{-+})$
 $\eta'_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$
 $\eta_{1} I^{G}(J^{PC}) = 0^{+}(1^{-+})$

$$\gamma \Leftrightarrow \rho, \omega, \phi$$

Couple to vector meson + exchanged particle

 $\pi_1 \Leftrightarrow \rho \pi$

$$η_1 ⇔ ρb_1, ωφ$$

 $η'_1 ⇔ φω$

Meson Spectroscopy from LQCD

Meson Spectroscopy from LQCD

Meson Spectroscopy from LQCD

At m_{π} =400 MeV, mass (1⁻⁺) ~ 1.9 GeV, mass (0⁺⁻) ~ 2.5 GeV

Models for hybrid mesons

Models for hybrid mesons

Models for hybrid mesons

How do exotics decay?

Possible daughters:

Flux Tube Model

The angular momentum in the flux tube stays in one of the daughter mesons (L=1) and (L=0) meson, e.g:

simple decay modes such as $\eta \pi, \rho \pi, \dots$ are suppressed.

Partial width dependence on hybrid mass

FIG. 1. Dominant partial widths of a 1^{-+} isovector hybrid at various hybrid masses. The partial widths to $K_1(1400)K$, $\eta(1295)\pi$, $b_1\pi$ and $\rho\pi$ correspond to the highest to the lowest intersections with the vertical axis.

Page PRD 59, 034016-9

Experimental status of exotic 1⁻⁺ π (1600)

Jefferson Lab Elton S. Smith MESON2012 May 31 – June 5, 2012				
CLEO-c	$\overline{\psi(2S)}$	\rightarrow	$\gamma\chi_{c1},~\chi_{c}$	$_{c1} \rightarrow \eta' \pi^+ \pi^-$
COMPASS	$\pi^{-}A$	\rightarrow	$ ho\pi^-A$	search
CLAS	$\overline{\gamma p}$	$\not\rightarrow$	$\rho \pi^+ n$	photoproduction
			$ ho^-\pi^0 n$	Only
E852-IU	$\pi^- p$	$\not\rightarrow$	$ ho\pi^- p$	
Crystal Barrel	$\overline{p}n$	\rightarrow	$b_1\pi^-$	
			$\eta'\pi^-p$	
			$f_1 \pi^- p$	
	·· 1		$b_1 \pi^- p$	
$\mathrm{E852}$	$\pi^- p$	\rightarrow	$\rho \pi^- p$	
			$\pi^{-}\eta'A$	[Saturday Plenary 4]
· <u> </u>			$\pi^{-}f_{1}A$	Meyer PRC 82 (2010) 025208
VES	$\pi^{-}A$	\rightarrow	$\pi^- b_1 A$	For review see

CLEO-c exotic π_1

Adams PRD 84 (2011) 112009

Other suspected hybrid signals

New state Y(4260) 1⁻⁻ state found by Babar/CLEO Does not fit into the quark model spectrum Properties consistent with hybrid charmonium state.

[Friday C2] Zhu Int J Mod Phy E 17 (2008) 283

[Friday C1]

A second new state Y(2175) is proposed as its

light quark analog ssg

Photoproduction

Decomposition of total cross section $E_v = 9.3 \text{ GeV}$

Topology	$\sigma~(\mu b)$	% of σ with neutrals
1-prong	8.5 ± 1.1	100
3-prong	64.1 ± 1.5	76 ± 3
5-prong	34.2 ± 0.9	86 ± 4
7-prong	6.8 ± 0.3	86 ± 6
9-prong	0.61 ± 0.08	87 ± 21
With visible strange decay	9.8 ± 0.4	-
Total	124.0 ± 2.5	82 ± 4

Approximately the 70% of total cross section in the energy region $E_{\gamma} \sim$ 7-12 GeV has multiple neutrals and is completely unexplored

γ and π beams

Note: much more photon data from Jlab at lower energy

Tefferson C

ab

Photoproduction and linear polarization

- Production
 - The expectation from the flux tube model is that hybrids will be produced at a rate comparable to normal mesons.
 - This expectation is corroborated by recent lattice calculations that show that the strength of charmonium hybrid radiative decays are similar to normal mesons

 $\Gamma(\eta_{c1} \to J/\psi\gamma) \sim 100 \text{keV}$

Dudek PRD 79 (2009) 094504

Polarization

- For a given produced resonance, linear polarization enables one distinguish between naturalities of exchanged particles.
- If the production mechanism is known, linear polarization enables one to filter resonances of different naturalities.

Filter on naturality

Minimum photon energy for search

Resonant shapes generated with the same widths and production cross sections. Yield and line shape determined by production kinematics.

Jefferson Pab

ab

GlueX strategy for hybrid meson search

- Use 8 9 GeV polarized photons (12 GeV electron beam)
 - Expect production of hybrids to be comparable to normal mesons
 - Dearth of experimental data
- Use hermetic detector with large acceptance
 - Decay modes expected to have multiple particles
 - hermetic coverage for charged and neutral particles
 - high data acquisition rate to enable amplitude analysis
- Perform amplitude analysis
 - identify quantum numbers as a function of mass
 - check consistency of results in different decay modes

Areal view of accelerator

Hall D civil construction complete

Summer 2011

Linearly Polarized Photon Beam

Rates are based on

- 12 GeV electron beam
- 20 μm diamond crystal
- 300 nA electron beam
- Rad-collimator: 76 m
- Collimator diameter: 3.5mm

Leads to $10^7 \gamma$ /s on target

Design is expandable to $10^{8}\gamma/s$

Hall D – GlueX detector

Detector status

Solenoidal Magnet: tested at 1500 A

CDC: all 3500 wires strung

FDC: 60% done

BCAL: All 48 modules built

FCAL: all 2800 lead glass and PMTs

Electronics: 70% ordered

Sample amplitude analysis with GlueX

1⁻⁺ exotic wave generated with 1.6% relative strength

Corresponds to 3.5 hours GlueX data, full detector simulation and reconstruction

12 GeV Project Schedule

Summary

QCD on the Lattice

- Lattice calculations have made great strides in calculating the spectrum of normal and hybrid mesons.
- Hybrid masses are expected in the range of 1.8 to 2.7 GeV
- The spectrum is consistent with the constituent gluon model $(J_q = 1^{+-})$

Model expectations

- In photoproduction, gluonic excitations will be produced with roughly the same cross sections as normal mesons.
- Gluonic excitations are expected to decay preferentially to multiparticle final states
- The GlueX experiment will study the spectrum of mesons with a polarized photon beam up to M ~ 2.8 GeV with sensitivities of a few percent of the total cross section.

