A Dispersive Treatment of $K_{\ell 4}$ Decays

Peter Stoffer

stoffer@itp.unibe.ch

Work in collaboration with G. Colangelo and E. Passemar

Albert Einstein Center for Fundamental Physics Institute for Theoretical Physics University of Bern

4th June 2012

12th International Workshop on Meson Production, Properties and Interaction MESON 2012, Jagiellonian University, Kraków

1

Outline

- Motivation
- **2** Dispersion Relation for $K_{\ell 4}$ Decays
- 3 Results
- 4 Outlook

Overview

- 1 Motivation Why $K_{\ell 4}$? Why Dispersion Relations?
- 2 Dispersion Relation for $K_{\ell 4}$ Decays
- 3 Results
- 4 Outlook

Importance of $K_{\ell 4}$ decays

Unique information about some low energy constants of ChPT:

- L₁^r, L₂^r, L₃^r multiply operators with four derivatives ⇒
 We need a four-"particle" process
- $K_{\ell 4}$ like a $2 \rightarrow 2$ scattering
- Happens at low energy, where ChPT is expected to converge better

4

Importance of $K_{\ell 4}$ decays

- Provides information on $\pi\pi$ scattering lengths a_0^0 , a_0^2
- Very precisely measured ⇒ Test of ChPT
 - → Geneva-Saclay, E865, NA48/2
- Kaon physics: High precision at low energy as a key to new physics?
 - $\rightarrow NA62$

Advantages of dispersion relations

- Summation of rescattering
- Connects different energy regions
- Based on analyticity and unitarity ⇒ Model independence
- O(p⁶) result available, but only useful if LECs are known

Overview

- Motivation
- 2 Dispersion Relation for $K_{\ell 4}$ Decays Kinematics and Matrix Element Decomposing the Amplitude Integral Equations
- 3 Results
- 4 Outlook

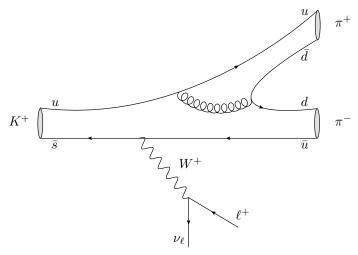
$K_{\ell 4}$ decays

Decay of a kaon in two pions and a lepton pair:

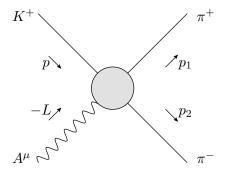
$$K^+(p) \to \pi^+(p_1)\pi^-(p_2)\ell^+(p_\ell)\nu_\ell(p_\nu)$$

 $\ell \in \{e, \mu\}$ is either an electron or a muon.

SM tree-level



Hadronic part of $K_{\ell 4}$ as $2 \to 2$ scattering



Form factors

 Lorentz structure allows four form factors in the hadronic matrix element.

$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2})|V_{\mu}(0)|K^{+}(p)\rangle = -\frac{H}{M_{K}^{3}}\epsilon_{\mu\nu\rho\sigma}L^{\nu}P^{\rho}Q^{\sigma}$$
$$\langle \pi^{+}(p_{1})\pi^{-}(p_{2})|A_{\mu}(0)|K^{+}(p)\rangle = -i\frac{1}{M_{K}}(P_{\mu}F + Q_{\mu}G + L_{\mu}R)$$

• In experiments, just K_{e4} decays are measured, yet. There, mainly one specific linear combination $F_1(s,t,u)$ of the form factors F and G is accessible.

11

Analytic properties

- $F_1(s,t,u)$ has a right-hand branch cut in the complex s-plane, starting at the $\pi\pi$ -threshold.
- Left-hand cut present due to crossing.
- Analogous situation in t- and u-channel.

Decomposition has been done first for the $\pi\pi$ scattering amplitude.

→ Stern, Sazdjian, Fuchs (1993)

Define a function that has just the right-hand cut of the partial wave f_0 :

$$M_0(s) := P(s) + \frac{s^4}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\text{Im} f_0(s')}{(s' - s - i\epsilon)s'^4} ds'$$

Define similar functions that take care of the right-hand cuts of f_1 and the S- and P-waves in the crossed channels.

All the discontinuities are split up into functions of a single variable. \Rightarrow Major simplification!

We neglect:

- Imaginary parts of D- and higher waves,
- High energy tail of dispersion integral from Λ^2 to ∞ .

Both effects are of $\mathcal{O}(p^8)$.

Respecting isospin properties, we end up with the following decomposition:

$$F_1(s,t,u) = M_0(s) + \frac{2}{3}N_0(t) + \frac{1}{3}R_0(t) + R_0(u) + (u-t)M_1(s) - \frac{2}{3}\left[t(u-s) - \Delta_{K\pi}\Delta_{\ell\pi}\right]N_1(t) + \mathcal{O}(p^8).$$

Dispersion relation

Solution of the Omnès problem:

$$M_0(s) = \Omega_0^0(s) \Bigg\{ P(s) + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\Lambda^2} \frac{\hat{M}_0(s') \sin \delta_0^0(s')}{|\Omega_0^0(s')|(s'-s-i\epsilon)s'^3} ds' \Bigg\},$$

with the Omnès function

$$\Omega_0^0(s) := \exp\left\{\frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{\delta_0^0(s')}{s'(s'-s-i\epsilon)} \, ds'\right\}.$$

Similar relations for the other functions.

17

Phase inputs

We need the following phase shifts:

- δ_0^0 , δ_1^1 : $\pi\pi$ scattering
- $\delta_0^{1/2}$, $\delta_1^{1/2}$, $\delta_0^{3/2}$: $K\pi$ scattering

 $(\delta_l^I: l - \text{angular momentum}, I - \text{isospin})$

Integral Equations

Hat functions

- The left-hand cut is contained in $\hat{M}_0(s)$.
- $\hat{M}_0(s)$ is given as angular averages of N_0, N_1, \ldots

Intermediate summary

- Problem parametrised by five subtraction constants.
- Elastic scattering phase shifts as inputs.
- Energy dependence fully determined by the dispersion relation.

Intermediate summary

Coupled set of integral equations:

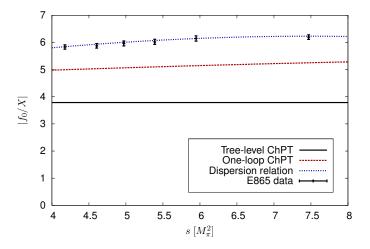
```
\Rightarrow M_0(s), M_1(s), \ldots: DR involving \hat{M}_0(s), \hat{M}_1(s), \ldots
\Rightarrow \hat{M}_0(s), \hat{M}_1(s), \ldots: Angular integrals over M_0(s), M_1(s), \ldots
```

- System solved by iteration
- Problem linear in subtraction constants ⇒ Fit data with a linear combination of five basic solutions

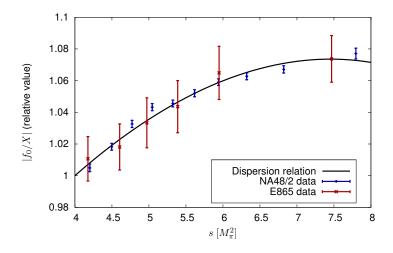
Overview

- Motivation
- 2 Dispersion Relation for $K_{\ell 4}$ Decays
- 3 Results
 Fit to Data
 Matching to ChPT
- 4 Outlook

Fit of the S-wave



Fit of the S-wave



Determination of LECs

- Matching the dispersive result to ChPT at s=t-u=0: Below threshold, where ChPT converges better
- L_1^r , L_2^r and L_3^r can be determined

Overview

- Motivation
- 2 Dispersion Relation for $K_{\ell 4}$ Decays
- 3 Results
- 4 Outlook

Work in progress

- Isospin corrections
- Matching to $\mathcal{O}(p^6)$ ChPT

Summary

- Parametrisation valid up to and including $\mathcal{O}(p^6)$
- Model independence
- Full summation of rescattering effects
- Very precise data available
- Advantage over pure ChPT: Matching below threshold, where ChPT converges better ⇒ LECs

Overview

5 Backup Slides
Preliminary Values for LECs

Determination of LECs - preliminary!

Fit to NA48/2 (partial sample) with E865 norm, matching to $\mathcal{O}(p^4)$ ChPT ($\mu=770$ MeV):

$$L_1^r = (0.72 \pm 0.29) \cdot 10^{-3}$$

$$L_2^r = (0.64 \pm 0.27) \cdot 10^{-3}$$

$$L_3^r = (-2.71 \pm 1.18) \cdot 10^{-3}$$

J. Bijnens, I. Jemos, 'fit All': → arXiv:1103.5945 [hep-ph]

$$L_1^r = (0.88 \pm 0.09) \cdot 10^{-3}$$

 $L_2^r = (0.61 \pm 0.20) \cdot 10^{-3}$
 $L_3^r = (-3.04 \pm 0.43) \cdot 10^{-3}$