Progress on Neutron -Target Multipoles *above 1 GeV*

Igor Strakovsky (GW), W. Chen (Duke U), H. Gao (Duke U), W.J. Briscoe (GW), D. Dutta (MSU), A.E. Kudryavtsev (ITEP/GW), M. Mirazita (INFN), M. Paris (LANL), P. Rossi (INFN), S. Stepanyan (JLab), V.E. Tarasov (ITEP), & R.L. Workman (GW)

PWA for non-Strange Baryons & **SAID** Database

Originally: PWA arose as the technology to determine amplitude of the reaction via fitting scattering data which is a non-trivial mathematical problem **Center for Nuclear Studies** [Solution of ill-posed problem **Data Analysis Center** - Hadamard, Tikhonov, et al **Below 4 GeV** Resonances appeared as a by-product Partial-Wave Analyses at GW [Bound states objects with quantum [See Instructions] numbers and mass, lifetime, *etc]* [W = 1320 to 1930 MeV] 31,402 **Pion-Nucleon** Pion-Pion-Nucleon 241,214 evts Kaon-Nucleon That is the strategy of the 5,267 38,162 Nucleon-Nucleon GW/VPI πN PWA since 1987 **Pion Photoproduction** 26,554 113,900 **Pion Electroproduction** 9.086 Kaon Photoproduction Eta Photoproduction 6,235 Eta-Prime Photoproduction 1,030 Pion-Deuteron (elastic) 1,914 Pion-Deuteron to Proton+Proton 6.083 log-likelihood For $\pi \rightarrow 2\pi$, we use while for the rest – least-squares technologies 6/3/2012

Meson-2012, Krakow, Poland, May 2012

Igor Strakovsky 2

\mathcal{N}^* and Δ^* States coupled to $\pi \mathcal{N}$ [SAID: http://gwdec.phys.gwu.edu/]

• GW SAID N* program consists of $\pi N \rightarrow \pi N$ $\gamma N \rightarrow \pi N \rightarrow \gamma^* N \rightarrow \pi N$ As was established by Dick Arndt on 1997

Assuming dominance of 2-hadronic channels
 [πN elastic & π⁻p→ηn], we parameterize
 γ*N→πN in terms of πN→πN amplitudes

Partial-Wave Analyses at GW

[See Instructions] Pion-Nucleon Pion-Pion-Nucleon Kaon-Nucleon Nucleon-Nucleon Pion Photoproduction Pion Electroproduction Eta Photoproduction Eta-Prime Photoproduction Pion-Deuteron (elastic) Pion-Deuteron to Proton+Proton

Analyses From Other Sites Mainz (MAID – Analyses) Nijmegen (Nuckon-Nuckon OnLine)

Contact

Richard A. Arndt⁺ William J. Briscoe Ron L. Workman Igor I. Strakovsky Mark Paris

Center for Nuclear Studies Department of Physics The George Washington University -Virginia Campus-20101 Academic Way Algor Strakovsky JSA3

 Non-strange objects in the PDG Listings come mainly from: Karlsruhe-Helsinki, Carnegie-Mellon-Berkeley, & GW/VPI

• The main source of EM couplings is the GW/VPI analysis

SAID for Pion Photoproduction [W. Chen, et al, arXiv:1203.4412 [hep-ph]

6/3/2012

Meson-2012, Krakow, Poland, May 2012

Igor Strakovsky

Recent SAID results for Pion Photo Prod

 The overall SAID χ² has remained stable against the growing database, which has increased by a factor of 2 since 1995 [most of this increase coming from data from photon-tagging facilities]. 	N _{Data}	χ^2/N_{Data}	Energy Limit (MeV)	Solution
	26,179	2.09	2700	GB12
	25,814	2.01	2700	CM12
	25,553	2.08	2700	SN11
	24,912	2.05	2700	SP09
	25,524	2.18	3000	FA06
	17,571	2.01	2000	SM02
More details about proton-target	13,415	2.37	2000	SM95
ineasurements are in Eugene Pasyuk s				

Recent SAID parameterization for Pion Photoproduction

[R. Workman, et al, Phys Rev C 85, 025201 (2012)]

• M = (Born + A)(1 + $iT_{\pi N}$) + $BT_{\pi N}$ + (C + iD)($ImT_{\pi N}$ - $|T_{\pi N}|^2$)

 Terms A – D were parametrized in terms of polynomials with the correct threshold behavior.

- The Born and Phenomenological
 A & B contributions are generally found to cancel – effectively reducing the Born at high energies.
- C and D terms contributions grows with πN reaction Xsection.
- Amplitude satisfy Watson's [K.M. Watson, Phys Rev 95, 228 (1954)] theorem below the 2π threshold allowing for a smooth departure from constraint at high energies.

Proton Multipoles from CM12

[R. Workman, W. Briscoe, M. Paris, IS, arXiv:1202.0845 - to be published in Phys Rev C 85 (2012)]

Single Pion Photoproduction

- Only with good data on both proton and neutron targets, one can hope to disentangle the isoscalar & isovector EM couplings of the various N* & ∆* resonances, [K.M. Watson, Phys Rev 95, 228 (1954); R.L. Walker Phys Rev 182, 1729 (1969)]
 as well as the isospin properties of the non-resonant background amplitudes.
- The radiative decay width of the neutral baryons may be extracted from $\pi^- \& \pi^0$ photoproduction off a neutron, which involves a bound neutron target and requires the use of a model-dependent nuclear corrections.
- The lack of $\gamma n \rightarrow \pi^- p \& \gamma n \rightarrow \pi^0 n$ data does not allow us to be as confident about the determination of neutron couplings relative to those of the proton.

 $\gamma \eta \rightarrow \pi \rho$ Experiment

- The existing $\gamma n \rightarrow \pi^- p$ database contains mainly differential cross sections (17% of which are from **polarized** measurements).
- Many of these are old **bremsstrahlung** measurements with limited angular coverages and large energy binnings ($E_{\gamma} = 100 200$ MeV). In several cases, the **systematic** uncertainties have not been given.
- At lower energies (E_{γ} < 700 MeV or so), there are data sets for the inverse π^- photoproduction reaction: $\pi^-p \rightarrow \gamma n$. This process is free from complications associated with a **deuteron target**.
- However, the disadvantage of using $\pi^-p \rightarrow \gamma n$ is the **5** to **500** times larger cross section for $\pi^-p \rightarrow \pi^0 n \rightarrow \gamma \gamma n$.

• The new CLAS cross section set has quadrupled the world database for $\gamma n \rightarrow \pi^{-}p$ above $E_{\gamma} = 1$ GeV.

Some of the N* baryons [N(1675)5/2⁻, for instance] have stronger EM couplings to the neutron than to the proton but parameters are very uncertain

$$N(1675) D_{15} I(J^P) = \frac{1}{2}(\frac{5}{2})$$
 Status: ***

PDG10: N(1675)5/2⁻→pγ , helicity-1/2 ampl A1/2: +0.019±0.008 N(1675)5/2⁻→pγ , helicity-1/2 ampl A1/2: -0.043±0.012

 SAID
 N(1675)5/2⁻→pγ , helicity-3/2 ampl A3/2: +0.016±0.001

 N(1675)5/2⁻→pγ , helicity-3/2 ampl A3/2: -0.058±0.002

• **PDG** estimate for the $A_{1/2} \& A_{3/2}$ decay amplitudes of the N(1720)3/2+ state are consistent with zero, while the recent **SAID** determination gives small but non-vanishing values

$$N(1720) P_{13} I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$
 Status: ****

 SPDG
 PDG10
 SAID

 N(1720)3/2⁺→pγ , helicity-1/2 ampl A1/2: +0.018±0.030
 +0.095±0.002

 N(1720)3/2⁺→pγ , helicity-3/2 ampl A3/2: -0.019±0.020
 -0.048±0.002

• Other unresolved issues relate to the second P_{11} , N(1710)1/2⁺, that are not seen in the recent πN PWA, contrary to other PWAs used by the PDG10

$$N(1710) P_{11} I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$
 Status: ***

Most of the results published before 1975 were last included in our 1982 edition, Physics Letters **111B** 1 (1982). Some further obsolete results published before 1984 were last included in our 2006 edition, Journal of Physics, G **33** 1 (2006).

The latest GWU analysis (ARNDT 06) finds no evidence for this resonance.

FSI and
$$\gamma d \rightarrow \pi \bar{\rho} p \longrightarrow \gamma n \rightarrow \pi \bar{\rho}$$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

 $\gamma d \rightarrow \pi^- \rho \rho$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

FSI for CLAS $\gamma n \rightarrow \pi \bar{\rho}$

[V. Tarasov, A. Kudryavtsev, W. Briscoe, H. Gao, & IS, Phys Rev C 84, 035203 (2011)]

CLAS data vs previous Brem Measurements [W. Chen, et al, arXiv:1203.4412 [hep-ph]

• Principal π^- experiments below 1 GeV were done at Meson Factories: LAMPF, TRIUMF, & PSI

• Previous measurements used a modified Glauber approach and the procedure of unfolding the Fermi motion of the `neutron' target.

Meson-2012, Krakow, Poland, May 2012

Igor Strakovsky

CLAS for $\gamma \pi \rightarrow \pi^{-} \rho$

[W. Chen, et al, arXiv:1203.4412 [hep-ph]

Neutron Multipoles from GB12 [W. Chen, et al, arXiv:1203.4412 [hep-ph]

E₀+Neutron Multipole

Summary and Prospects

- Pion Photo Prod measurements on the 'neutron' target are necessary to determine neutron couplings at $Q^2 = 0$ GeV²
- Future experiments on the reactions $\gamma d \rightarrow \pi NN$ are welcome, especially at small angles $\theta < 30^{\circ}$, where data are absent
- JLab HD-ICE, CB@MAMI-C, LEPS II, CB-ELSA, & MAX-lab data could yield surprises
- Complete experiment would make possible a direct reconstruction of helicity amplitudes for Pseudo-Scalar Meson Photo Prod
- Pion Electro Prod measurements on the 'neutron' target are necessary to determine neutron couplings at Q² > 0 GeV²

 Any meson Photo Prod treatment on the 'neutron' target requires a FSI study

THANKS

AND ADDRESS OF A DREAM AND A

igor@gwu.edu

