Baryon-Spectroscopy

Recent results from the Crystal Barrel/TAPS experiment at ELSA

U.Thoma, Bonn University

- Introduction
- Polarisation observables
- Results
- Current double polarisation experiments
- η -photoproduction at the neutron
- Summary

Aim: Good understanding of the spectrum and the properties of baryon resonances \leftrightarrow bound states of strong QCD

- What are the relevant degrees of freedom ?
- Effective forces between them ?

Symmetric quark models:

 \rightarrow many more resonances expected than observed yet

U. Loering, B. Metsch, H. Petry et al.

Constituent quarks confinement potential + residual interaction

non-strange N*-resonances

 \leftrightarrow wrong degrees of freedom ?

Excited baryons from Lattice QCD

R.Edwards et al., arXiv:1104.5152 [hep-ph]

Exhibits the broad features expected from SU(6) \otimes O(3)-symmetry

- \rightarrow Counting of levels consistent with non-rel. quark model
- \rightarrow no parity doubling

Of course there are also approximations made by lattice QCD (e.g. m_{π} =400 MeV)

Baryons may also be: $N^* = \alpha \cdot |qqq \rangle + \beta \cdot |Baryon Meson \rangle + \dots$

 \leftrightarrow some resonances can be dynamically generated (Λ (1405), ...)

Symmetric quark models:

- \rightarrow many more resonances expected than observed yet
 - certain configurations completely missing !
- Certain configurations not realised by strong QCD? Why?
- Experimentally not found yet (resonances might decouple from πN)

 \Leftrightarrow Photoprod. experiments e.g. $\gamma p \rightarrow N\eta$, $N\eta'$, $N\omega$, $\Delta \pi$, $N\rho$, $\Delta \eta$, ...

(give access to the inelastic channels: black box in $\pi N o \pi N$ -analyses)

Experimentally: Broad strongly overlapping resonances

Important:

- → Measurement of polarisation observables (unambigiuos PWA)
- → Investigation of different final states (multi-channel partial wave analysis)

Measurement of polarisation observables

Example : $\gamma p
ightarrow pM$ (M: pseudoscalar meson):

8 well chosen observables need to be measured to determine the contributing amplitudes = basis for an unambigious PWA

Problem otherwise: e.g. for $\gamma p
ightarrow p\eta$:

Two different PWA-solutions: both describing $d\sigma/d\Omega$ and Σ nicely, but:

CBELSA/TAPS: D.Elsner et al.,EPJ. A33 (2), 147 (2007) **Complete experiment: Measurement of 8 well chosen observables**

Photon		Target			Recoil			Target–Recoil			
					x'	y'	z'	x'	x'	z'	z'
		x	$oldsymbol{y}$	z				$egin{array}{c} x \end{array}$	z	$oldsymbol{x}$	z
unpolarized	σ	0	T	0	0	P	0	$T_{x'}$	$-L_{x'}$	$T_{\boldsymbol{z'}}$	$L_{z'}$
linear	- ∑	$oldsymbol{H}$	(- P)	- <i>G</i>	$O_{x'}$	(-T)	$O_{z'}$	$(-L_{z'})$	$(T_{z'})$	$(-L_{x'})$	$(-T_{x'})$
circularly	0	\boldsymbol{F}	0	- E	$C_{x'}$	0	$C_{z'}$	0	0	0	0

(e.g. $\gamma p
ightarrow p\eta$)

At ELSA : Double polarisation experiments with polarised beam and polarised target

... but first some other results:

CBELSA/TAPS: η - Photoproduction off the proton

CBELSA/TAPS: $\gamma \mathrm{p}
ightarrow \mathrm{p} \pi^0 \pi^0$ (V.Sokhoyan, Bonn)

Parity doublets occur:

Not expected by:

- present lattice QCD calculations or constituent quark-models

New data taken with polarised target

Double polarisation program at: JLAB, ELSA, MAMI

ELSA

an important step forward towards a complete experiment

Linearly polarised photons, longitudinally polarised target

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Phi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0} \cdot \left(1 - \mathrm{P}_{\gamma}^{\mathrm{lin}} \Sigma \cos(2\phi) + \mathrm{P}_{\gamma}^{\mathrm{lin}} \mathrm{P}_{z} \mathbf{G} \sin(2\phi)\right)$

(A. Thiel, Bonn)

Linearly polarised photons, longitudinally polarised target

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(\Phi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0} \cdot \left(1 - \mathrm{P}_{\gamma}^{\mathrm{lin}} \Sigma \cos(2\phi) + \mathrm{P}_{\gamma}^{\mathrm{lin}} \mathrm{P}_z \mathrm{G} \sin(2\phi)\right)$$

CBELSA/TAPS: Double pol. exp. $ec{\gamma}ec{p} o p\pi^0$ (M.Gottschall, Bonn)

Circularly polarised photons, longitudinally polarised target

Clear asymmetries observed !

 \sim complete angular coverage

 \Rightarrow New and important information for the PWA

CBELSA/TAPS: Double pol. exp. $\vec{\gamma} \vec{p} ightarrow p\eta$

(J. Müller, Bonn)

Circularly polarised photons, longitudinally polarised target

Count rate differences plotted: photon-spin nucleon-spin photon-spin nucleon-spin ∆count -1/2 +1/212000 preliminary ш Pol.Observable 10000 $N_{\frac{1}{2}} - N_{\frac{3}{2}}$ + 8000 S₁₁(1535) 6000 -0.5 E = 1000 - 1200 MeV 4000 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 . 2000 ш Pol.Observable E 0 400 800 1200 1600 2000 2400 0 Eγ[MeV] **Clear asymmetries observed !** -0.5 E = 1200 - 1400 MeV \sim complete angular coverage -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 meson $\cos \theta$

 \Rightarrow New and important information for the PWA

CBELSA/TAPS: Double pol. exp. $ec{\gamma}ec{p} o p\pi^0$ (J. Hartmann, Bonn)

Transversally polarised target

CBELSA/TAPS: Double pol. exp. $~ec{\gamma}ec{p}
ightarrow p\pi^0$ (J. 1

(J. Hartmann, Bonn)

Linearly pol. photons, transversally polarised target

Transversally polarised target

Strong deviations between PWAs and pol. obs. also for P and H

η - Photoproduction off the neutron

 \leftrightarrow Use kinematics to calculate neutron momentum:

 $n\eta$ -invariant mass can be calculated (no Fermi-motion)

phenomenological fit of total cross section data (Breit-Wigner-resonances only)

Narrow structure: mass \approx 1670 MeV, width \leq 50 MeV

- role of the $D_{15}(1675)$?, narrow $P_{11}(1670)$?
- explainable by S_{11} -states + P_{11} (1710) ?
- interference of $S_{11}(1535)/S_{11}(1650)$ + background ?

Challenge for the PWA

↔ conventional interpretation possible or narrow state needed ?

For a final interpretation:

 \Rightarrow interpretation of the origin of the observed structure

First double polarisation data (E) presently analysed (↔ quantum numbers)

also observed by GRAAL, Tohoku-LNS, MAMI-C

Summary

- Our experimental knowledge of the spectrum and the properties of baryons is steadily increasing !
- ↔ Important contributions from photo-(electro-) production experiments (single and double polarisation experiments)
 - allow in contrast to $\pi N
 ightarrow \pi N$ the measurement of inelastic channels !

Experiment: - no alternating pattern of positive and negative parity states

- parity doublets observed (not for all states (?))

- Baryons fall on Regge-trajectories, Why?

- ⇒ Quark models/first lattice calculations do not provide the expected systematics in the spectrum
- some states can be generated dynamically from their decays

narrow structure in η -photoproduction off the neutron observed

New experimental information from the double polarisation experiments

- \Rightarrow provide a more complete picture of the baryon spectrum !
- = Detailed testing ground for models (e.g. dynamically generated resonances) and lattice QCD.

Thank you for your attention!

