

Sadaharu Uehara (KEK) The Belle Collaboration

Meson TFF Workshop, 29-30 May, 2012 MESON2012, 31 May – 5 June, 2012

Jagiellonian University, Kraków

π^0 Transition Form Factor

 $\gamma\gamma * \rightarrow \pi^0$

Coupling of neutral pion with two photons Good test for QCD at high Q²

Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon

Theoretically calculated from pion distribution amplitude and decay constant $F(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \int T_H(x,Q^2,\mu)\phi_{\pi}(x,\mu)dx$

Measurement:

 $|F(Q^{2})|^{2} = |F(Q^{2},0)|^{2} = (d\sigma/dQ^{2})/(2A(Q^{2}))$ A(Q²) is calculated by QED |F(0,0)|^{2} = $64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^{2}m_{R}^{3}\}$

Detects e (tag side) and π^0

 $Q^2 = 2EE'(1 - \cos \theta)$ from energy and polar angle of the tagged electron

BaBar's Measurement

 π^0 transition form factor (TFF) measured by BaBar is larger than the asymptotic pQCD prediction above Q²>10GeV²

Below Q²<8GeV², the BaBar result supports the CLEO result.

η and η' TFFs from BaBar **PRD 84**, **052001(2011)** are consistent with QCD predictions.

Explanation within standard QCD calculations is difficult.

Measurement of π^0 TFF at Belle

Selection Criteria for Signal Events

- Triggered by HiE or CsIBB(=Bhabha prescaled by factor 50)
- **1 good track** only, **Electron-ID** E/p>0.8, $p_e > 1.0$ GeV/c in lab. system
- 2 Photons from π^0 $E_{\gamma i}$ >0.2GeV, $E_{\gamma \gamma} \equiv E_{\gamma 1} + E_{\gamma 2}$ > 1.0 GeV

No big energy asymmetry: $|E_{\gamma 1}-E_{\gamma 2}|/E_{\gamma \gamma} < 0.8$ Polar-angle difference: $\Delta \theta \equiv |\theta_{\gamma 1} - \theta_{\gamma 2}| > \frac{0.18 \text{ [rad} \cdot \text{GeV]}}{E_{\gamma \gamma}}$

To reject large background from Radiative Bhabha (e)e γ process

• Polar- angle of the electron and the two photons

 $-0.6235 < \cos \theta < +0.9481$ and **Bhabha Mask cut**

• e-charge vs. p_z direction correlation

$$-Q_{tag} (p_{z_{e}}^{*} + p_{z_{\gamma\gamma}}^{*}) > 0 \quad (* --- e^{+}e^{-}c.m.s.)$$

• 3-body kinematical cut for π^0 energy $E^*_{\gamma\gamma}$

Energy-momentum conservation using direction of $\mathbf{p}_{\gamma\gamma}$, and $m_{\gamma\gamma} = m_{\pi 0}$

0.85< ($\mathbf{E}_{ratio} \equiv E^*_{\gamma\gamma} = \frac{1.1}{\gamma\gamma}$

- Bhabha-background rejection, Acollinearity angle(e, $\gamma\gamma$) < 177° in e⁺e⁻ c.m. frame
- Good balances in azimuthal angle and p_t between e and π^0

Acoplanarity angle(e, $\gamma\gamma$) < 0.1 rad, $|\Sigma \mathbf{p}_t|$ < 0.2 GeV/c

Background rejection and signal enhancement

Bhabha Mask; Unbiased sample

Bhabha-Mask criteria (Yellow regions for selection)

S.Uehara, KEK, Belle, May-Jun. 2012, Krakow

7 (

Extraction of π^0 Yield

Signal Yields ; Q² Unfolding

Calibration of Bhabha-veto Thresholds using Radiative-Bhabha (VC) Events

Comparisons in Radiative Bhabha (VC) samples

Efficiency for the Signal Process

Peaking (π^0) Backgrounds

(e) $e\pi^0 X$ --- Backgrounds peaking at the pion mass,

which leak near to (${\rm E}_{\rm ratio}{=}1,\,|\Sigma p_{\rm t}|{=}0$)

(1) Study of wrong-sign events (defined by the charge vs. z-direction correlation)

No π^0 is there (1.2 ± 0.9 events)

Backgrounds from e⁺e⁻ annihilation and particle misidentification (of muon or hadron) are **negligibly small.**

(2) Background processes $\gamma\gamma^* \rightarrow \pi^0 \pi^0$ $ee \rightarrow (e)e \ \rho^0 / \omega, \ \rho^0 / \omega \rightarrow \pi^0 \gamma$ are experimentally observed

We build background MC's normalized to these observations

 Background contamination estimated

 $π^0 π^0$:
 2% uniformly for Q²

 $π^0 γ$:
 0.8%
 @ Q² < 12 GeV²

 1 - 3% @ 12 - 40 GeV²

S. Осниги, КЕК, Delle, Muy-Jun. 2012, Кгикоw

Cross Section

$$\frac{d\sigma}{dQ^2} = \frac{N (1-r_b)}{\int Ldt \text{ eff } B(\pi^0 \rightarrow \gamma\gamma) (1+\delta) \Delta Q^2}$$

The cross sections from p-tag and e-tag are evaluated, separately, and then combined.

 Q^2_{max} = 1.0 GeV² for the less-virtual photon Corrected for \sqrt{s} = 10.58 GeV

r_b: background fraction
eff -- signal selection efficiency
d : radiative correction = +2%

No systematic bias found between the p-tag and e-tag results.

Transition Form Factor

Representative value Q² is used for

Q² point that gives the cross section with the same size as the mean over the bin calculated using an approximated dependence, $d\sigma/dQ^2 \sim Q^{-7}$

Systematic Uncertainties

For Cross Section:

Q ² independent:	Tracking	1%			
	e-ID	1%			
	γγ reconstruction	3%			
	kinematical selection	2%			
	geometrical selection	2%			
	beam background	2%			
	integrated luminosity	1.4%			
	radiative correction	3%			
	form-factor effect	1.0%			
			(subtotal	6%)	
Q ² dependent:	Extraction of π^0 -yield	5–10%	estimated var	riation of fit (single Gauss + linear	fit)
	Trigger efficiency	2–12%			
	estimate	ed by stu	dies of trigger	threshold & Rad.Bhabha events	
	Peaking-background	1-4%	8-14%	in total	
For Transitio	n Form Factor:				
Half of the a	bove values, as $ F \sim \sqrt{d\sigma}$	/dQ ²			
with added	by an uncertainty of 2A	(Q ²) 2	% (form-fact	tor effect for the low-Q ² photon)	
		D	S.Uehara, K	KEK, Belle, May-Jun. 2012, Krakow	16

Comparisons with Previous Measurements and Fits

Fit A (suggested by BaBar) $Q^{2}|F(Q^{2})| = A (Q^{2}/10GeV^{2})^{\beta}$ BaBar: ---- $A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}$ $\beta = 0.25 \pm 0.02$ Belle: — $A = 0.169 \pm 0.006 \text{ GeV}$ β = 0.18 ± 0.05 χ^2 /ndf = 6.90/13 ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^{2}|F(Q^{2})| = BQ^{2}/(Q^{2}+C)$ Belle: $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ χ^2 /ndf = 7.07/13 B is consistent with the QCD value (0.185GeV)

No rapid growth above $Q^2 > 9GeV^2$ is seen in Belle result.

Summary

• The π^0 transition form factor is measured at Belle in the range, 4 GeV² $\leq Q^2 \leq 40$ GeV².

There was a significant effect from Bhabha-veto, but the trigger simulator to estimate the signal efficiency is tuned, reliably, calibrating it using radiative Bhabha events.

- No rapid growth of π^0 TFF is observed for the region Q²>9GeV².
- Phenomenological fits are applied for Q^2 dependence of π^0 TFF.

Belle arXiv:1205.3249[hep-ex] (2012) Submitted to Phys. Rev. D

Backup

Energy-correlations

in the skim file, $\Sigma E\gamma > 1.0 \text{ GeV}$

Similar distribution to Signal-MC.

But, the exp. events are dominated by backgrounds (Radiative Bhabha)

20

Effect of Bhabha-veto in angle correlation

 $\gamma\gamma$ from π^0 and from backgrounds

Kenematical Criteria

Checks of Signal Details

E_{ratio} tail

Study of **wrong-sign events** defined by the charge vs direction relation.

() () ()

Double Gaussian(for signal)+ 2nd-O^{rder} Polynomial (background)

$$f(x) \sim a + bx + cx^2 + \frac{A}{\sqrt{2\pi\sigma}} \{ re^{-\frac{(x-m)^2}{2\sigma^2}} + \frac{1-r}{k} e^{-\frac{\{x-(m+\Delta m)\}^2}{2(k\sigma)^2}} \}$$

Conversion factor for |F(Q²)|: 2A(Q²)

Use the cross section formula by "Brodsky-Kinoshita-Terazawa" (PRD 4, 1532(1971)) Not using EPA --- not trivial CLEO, PRD57, 33(1998)

EPA – Equivalent Photon Approximation Assume being factorized as $\sigma_{ee} \sim \int \sigma_{\gamma\gamma}(Q_1^2, Q_2^2) N_{\gamma}(Q_1^2) N_{\gamma}(Q_2^2)$ (we do not assume this)

We assume only the form factors is factorized $\sigma_{ee} \sim \int a(Q_1^2, Q_2^2) |F(Q_1^2, Q_2^2)|^2$, and $F(Q_1^2, Q_2^2) = F(0, 0) f(Q_1^2) f(Q_2^2)$, f(0) = 1

Furthermore,

we assume $f(Q^2) = 1/(1+Q^2/m_{\rho}^2)$ when $Q^2 < m_{\rho}^2$ But, $f(Q^2)$ is unknown for $Q^2 > m_{\rho}^2$ (what we measure) Define as $F(Q^2) \equiv F(Q^2, 0) = F(0, Q^2) = F(0, 0) f(Q^2)$

Conversion factor for |F(Q²)| (cont.)

 $c = F(0, 0) \rightarrow F(Q_1^2, Q_2^2) = c f(Q_1^2) f(Q_2^2) = c f(Q_1^2) / (1+Q_2^2/m_{\rho}^2)$

-- factorization assumption

Assume some values for c and $f(Q_1^2)$

→ $d\sigma/dQ_1^2 = A(Q_1^2) c^2 |f(Q_1^2)|^2$ (by BKT formula)

conversion factor $A(Q^2)$ is determined by the calculation

- Single-tag measurement $d\sigma/dQ^2$

Factor 2 : Ele-tag + Pos-tag

```
(d\sigma/dQ^2)/2A(Q^2) = c^2 |f(Q^2)|^2 = c^2 |f(Q^2)|^2 |f(0)|^2
```

 $= |F(Q^{2}, 0)|^{2} = |F(Q^{2})|^{2}$

with the same scheme for the efficiency determination

and event generation \rightarrow Signal MC

Calculation of $A(Q^2)$ coincides BaBar's calculation with the same BKT and the same $f(Q_2^2)$ within 0.1%.

ISR and Radiative Correction

 r_k --- Energy fraction of the ISR photon wrt. the beam energy

The r_k range for the signals is constrained by $\mathbf{E}_{ratio} \mathbf{cut}$ which roughly corresponds to $-0.03 < r_k < 0.10$

MC event generation includes the ISR effect by exponentiation technique for $r_k < 0.25$

 r_k distribution is consistent between the data and the signal MC, The selected events are contained in r_k <0.10

Radiative correction for cross section

 $\begin{array}{ll} 1+\delta = 1.02 & (\text{definition: } \sigma_{\text{LO+NLO}} = \sigma_{\text{LO}}(1+\delta), \\ \text{including +0.03 hadron-loop in vacuum polarization.} \\ \text{with small } Q^2 \text{ dependence (~1% effect).} \end{array}$

1.4

1.2

Eratio 8.0

0.6

0.4

0.2

0

Signal MC

0.2

rk

0.4

Our cross section and TFF are converted to those for the LO.

Study of Radiative Bhabha samples

Experimental (e)e γ sample with the similar topology to (e)e π^0 **10,000 times larger statistics** (but physics is different...) **Angle-angle (cos \theta_{\gamma} vs. cos \theta_{e})** Bhabha-Veto pattern in Exp.data

Tuning of Bhabha-veto thresholds

Looking at N(HiE)/N(Unbiased) as a function of E-deposit in Each ECL-Bhabha trigger segment

Experimental Rad.Bhabha sample

0000

Tuned MC

Comparisons of Radiative Bhabha (VC) samples

000

Comparison of Bhabha Mask*Veto efficiency for Radiative Bhabha events

Bhabha mask*veto efficiency from MC is confident Within 5 – 12% error depending on Q^2

 $\pi^0\pi^0$ background MC

Background contamination in signal is estimated by the $\pi^0\pi^0$ background MC which is normalized to the observation, as 2%

Transition Form Factor

Representative value \overline{Q}^2 is used for each Q^2 bin

 Q^2 point that gives the cross section with the same size as the mean over the bin calculated using an approximated dependence, $d\sigma/dQ^2 \sim Q^{-7}$

BaBar's Efficiency and Cross section

FIG. 4 (color online). The detection efficiency as a function of the momentum transfer squared for events with a tagged electron (squares), a tagged positron (triangles), and their sum (circles).

FIG. 21 (color online). The $e^+e^- \rightarrow e^+e^-\pi^0$ differential cross section obtained in this experiment compared to that from the CLEO experiment [12].