Selected HERMES results on semi-inclusive meson production

Charlotte Van Hulse, on behalf of the HERMES collaboration University of the Basque Country – UPV/EHU

MESON 2012, Krakow

June 4, 2012

Outline

- the HERMES experiment
- π^{\pm} and K^{\pm} multiplicities on hydrogen and deuterium
- hadronization in nuclei
- single-spin asymmetries in SIDIS off transversely polarized protons
 - Sivers effect
 - transversity and Collins
- spin-independent non-collinear cross section

HERMES: HERA MEasurement of Spin

Semi-inclusive deep-inelastic scattering

$$Q^{2} = -q^{2}$$

$$\nu \stackrel{[ab]}{=} E - E'$$

$$W^{2} = M_{N}^{2} + 2M_{N}\nu - Q^{2}$$

$$y \stackrel{[ab]}{=} \frac{\nu}{E}$$

$$x_{B} \stackrel{[ab]}{=} \frac{Q^{2}}{2M_{N}\nu}$$

$$z \stackrel{[ab]}{=} \frac{E_{h}}{\nu} P_{h\perp} = \frac{|\vec{q} \times \vec{P_{h}}|}{|\vec{q}|}$$

$$\sigma^{ep \rightarrow eh} = \sum_{q} DF^{p \rightarrow q}(x_{B}, p_{T}^{2}, Q^{2}) \otimes \sigma^{eq \rightarrow eq} \otimes FF^{q \rightarrow h}(z, k_{T}^{2}, Q^{2})$$

Distribution Function (DF): distribution of quarks in nucleon **Fragmentation Function (FF):** fragmentation of struck quark into final-state hadron

 p_T/k_T : transverse momentum of struck/fragmenting quark

Hadron multiplicities

Extraction of Born multiplicities

$$M_{Born}^{h}(j) = \frac{1}{n_{Born}^{DIS}(j)} \sum_{i} \left[S_{h}^{-1} \right](j,i) \left[M_{meas}^{h}(i) N_{meas}^{DIS}(i) - n^{h}(i,0) \right]$$

smearing matrix from LEPTO+JETSET Monte-Carlo simulation

accounts for

- QED radiative effects (RADGEN)
- limited geometric and kinematic acceptance of spectrometer
- detector resolution

 $n^{h}(i,0)$ migration of events outside acceptance into acceptance

extraction in 3D: binning in $(x_B, z, P_{h\perp})$ and $(Q^2, z, P_{h\perp})$

Results projected in z

$$\frac{M_{p(d)}^{\pi}}{M_{p(d)}^{\pi^{-}}} = 1.2 - 2.6 (1.1 - 1.8)$$
$$\frac{M_{p(d)}^{K^{+}}}{M_{p(d)}^{K^{-}}} = 1.5 - 5.7 (1.3 - 4.6)$$

~-+

multiplicities reflect

- nucleon valence-quark content (u-dominance)
- favored \leftrightarrow unfavored fragmentation

Results projected in z and $P_{h\perp}$

- $P_{h\perp}$ (=p_T on figures): transverse intrinsic struck-quark momentum - transverse momentum from fragmentation process
- K⁻: broader distribution

Comparison with models

Probing space-time evolution of hadronization

parton and nuclear medium:

- PDFs modified by nuclear medium
- gluon radiation and rescattering

(pre-)hadron and nuclear medium:

- rescattering
- absorption
- differences predicted for partonic and (pre-)hadronic interactions

hadron multiplicity ratios from heavier targets and deuterium space-time evolution of hadron formation

Results in z for slices of ν

- R^{h}_{A} decreases with increasing z
- effect increases with increasing A
- p: $R_A^h > 1$ at low z
- K^+ : $R^h_A \simeq 1$ at low z

Results in $P_{h\perp}^2$ for slices of z

- R^{h}_{A} increases strongly with increasing $P^{2}_{h_{\perp}}$ (Cronin effect)
- except at large z for $\pi^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$

FSI ---- left-right (azimuthal) asymmetry in direction of outgoing hadron

Sivers amplitudes for pions

Sivers amplitudes for kaons

Collins amplitudes for pions

- π^{\pm} increasing with z and $x_{_{\rm B}}$
- positive for $\pi^{\scriptscriptstyle +}$
- large & negative for π^{-} $H_{1}^{\perp,fav} \approx -H_{1}^{\perp,unfav}$
- isospin symmetry fulfilled

Collins amplitudes for kaons

- K⁺: increasing with z and $x_{_{B}}$
- positive for K⁺ & larger than for π^+

 K⁻ ≈ 0, ≠ from π⁻
 K⁻ is pure sea object: sea-quark transversity expected to be small

Spin-independent semi-inclusive **DIS cross section**

 $P_{h\perp}$

 \vec{P}_h

111

$$\frac{d\sigma}{dxdydzdP_{h\perp}^2d\phi_h} = \frac{\alpha^2}{xyQ^2}(1+\frac{\gamma^2}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos 2\phi_h F_{UU}^{\cos 2\phi_h}\}$$
$$\gamma = \frac{2Mx}{Q}, \ F = F(x,Q,z,P_{h\perp})$$

Spin-independent semi-inclusive DIS cross section

 $P_{h\perp}$

 \vec{P}_h

non-collinear cross section

$$\frac{d\sigma}{dxdydzdP_{h\perp}^{2}d\phi_{h}} = \frac{\alpha^{2}}{xyQ^{2}}(1+\frac{\gamma^{2}}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\}$$

$$\frac{1}{P_{UU}^{\cos2\phi_{h}}} = \frac{2Mx}{Q}, F = F(x,Q,z,P_{h\perp})$$

$$F_{UU}^{\cos2\phi_{h}} = \mathcal{I}[-\frac{2(\hat{P}_{h\perp}.\vec{p}_{T})(\hat{P}_{h\perp}.\vec{k}_{T}) - \vec{p}_{T}.\vec{k}_{T}}{M_{h}M} + h_{1}^{\perp}H_{1}^{\perp}]$$

$$\frac{1}{P_{UU}^{\phi_{T}}} = \int_{P_{T}}^{\Phi_{T}} \int_{P_{T}}^{$$

Spin-independent semi-inclusive DIS cross section

 $P_{h\perp}$

 \vec{P}_h

non-collinear cross section

$$\frac{d\sigma}{dxdydzdP_{h\perp}^{2}d\phi_{h}} = \frac{\alpha^{2}}{xyQ^{2}}(1+\frac{\gamma^{2}}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\}$$

$$+C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\}$$

$$\gamma = \frac{2Mx}{Q}, F = F(x,Q,z,P_{h\perp})$$

$$F_{UU}^{\cos\phi_{h}} = \frac{2M}{Q}\mathcal{I}[-\frac{\hat{P}_{h\perp}.\vec{p}_{T}}{M}f_{1}D_{1} - \frac{\hat{P}_{h\perp}.\vec{k}_{T}}{M_{h}}\frac{p_{T}^{2}}{M^{2}}h_{1}^{\perp}H_{1}^{\perp} + \dots]$$
Cahn effect quark-gluon-quark correlations

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_h^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging!
azimuthal modulations also possible due to
detector geometrical acceptance

higher-order QED effects

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging!

azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)}$$

$$\omega = (x, y, z, P_{h\perp}^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging!

azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

fully differential analysis needed unfolding procedure with 400 x 12 bins

BINNING							
400 kinematic bins x 12 φ-bins							
Variable	Bin limits						#
х	0.023	0.042	0.078	0.145	0.27	1	5
у	0.3	0.45	0.6	0.7	0.85		4
Z	0.2	0.3	0.45	0.6	0.75	1	5
P _{hT}	0.05	0.2	0.35	0.5	0.75		4

4

P_{hT}

0.05

0.2

0.35

0.5

0.75

• H-D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$

• $\pi^{-} > 0 \twoheadrightarrow \pi^{+} \leqslant 0$: $H_{1}^{\perp, fav} \approx -H_{1}^{\perp, unfav}$

27

• H-D comparison: weak flavor dependence

- magnitude increases with z
- π^+ : magnitude increases with $P_{h_{\perp}}$

- K⁺<0, larger in magnitude than π^+
- K⁻≃0

Summary

- p^{\pm} and K^{\pm} multiplicities on hydrogen and deuterium:
 - 3-dimensional extraction
 - support notion of favored fragmentation
- hadronization in nuclei:
 - 2-dimensional extraction
 - contribute to increased understanding of fragmentation process
- significant Sivers amplitudes for π^+ and K^+ (role of sea quarks) non-zero orbital angular momentum
- significant Collins amplitudes for π^{\pm} and K⁺ access to transversity and Collins fragmentation function
- Spin-independent non-collinear cross section:

evidence for non-zero Boer-Mulders distribution function and Collins fragmentation function

through Cahn effect constraint on quark intrinsic momentum and spin-independent transverse-momentum fragmentation functions

Backup

Extraction of multiplicities

- charged pion and kaon multiplicities
- hydrogen and deuterium targets
- kinematic requirements:

 $Q^{2} > 1 \text{ GeV}^{2} \qquad 0.1 < y < 0.85$ $W^{2} > 10 \text{ GeV}^{2} \qquad 2 \text{ GeV} < P_{h} < 15 \text{ GeV}$

0.2 < z < 0.8

• 3D binning: $(x_B, z, P_{h\perp})$ and $(Q^2, z, P_{h\perp})$

Multiplicities: results projected in z_{R} and x

• no strong dependence on $x_{_{\rm B}}$

Multiplicities: results projected in z² and Q

- strong correlation $x_{_{\rm B}}$ and Q^2

Multiplicities projected in z: VM contribution

Mulitplicities d-p: results projected in z and $P_{h\perp}$

37

Multiplicity ratios: results in ν for slices of z

- $R_{A}^{''}$ decreases with increasing A (except for protons)
- π^{\pm} & K⁻: R^{h}_{A} increases with increasing v
- K^+ : R^n_A increases with increasing v, but different behavior
- p: $R_{A}^{n} > 1$ at low z

Results in z for slices of $P_{h\perp}^2$

- decrease of R^{h}_{A} with increasing z stronger at large P^{2}_{h} and A
- no Cronin effect at large z
- p: R_A^h at low z larger for large $P_{h\perp}^2$

Collins fragmentation function: Artru model X. Artru et al., Z. Phys. C73 (1997) 527

A. Altiu et al. , 2. Phys. C**13** (199

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum numbers:

orbital angular momentum creates transverse momentum:

 $\phi = \pi/2$

Collins amplitudes for pions

Collins amplitudes for pions

Cahn effect

R. N. Cahn, Phys. Lett. B78:269, 1978 Phys. Rev. D40: 3107, 1989

M. Anselmino et al., Phys. Rev. D71:074006, 2005

after integration over p_T azimuthal dependence remains, reflected in $\cos\phi_h$