

Kaon physics at CERN -Recent results from the NA48/2 and NA62 experiments

Andreas Winhart

Institut für Physik, Universität Mainz

for the NA48/2 and NA62 collaborations

Meson 2012, Cracow

NA48/NA62 at CERN

Topics covered in this talk:

- K_{13}^{\pm} form factors measurement at NA48/2.
- Precision lepton flavour universality test: $K^{\pm} \rightarrow l^{\pm}\nu$.
 - NA62: The ultra-rare decay $K^+ \rightarrow \pi^+ \nu \bar{\nu}$.

The NA48/2 and NA62 (${\rm R}_{\rm K}$) beam line

The analyses presented in this talk are based on two data taking periods with minimum bias trigger configurations:

NA48/2: a special three days run in 2004 / NA62: four months in 2007.

The NA48 detector

Magnetic spectrometer

- 4 drift chambers with central dipole magnet
- 4 views/chamber: redundancy \rightarrow efficiency
- Magnet polarity periodically reversed

NA48/2: $\Delta p/p = 1.00 \% \oplus 0.044 \% \times p$

NA62: $\Delta p/p = 0.47 \% \oplus 0.020 \% \times p$

Liquid Krypton EM calorimeter (LKr)

- High granularity (13248 cells of $2 \times 2 \,\mathrm{cm}^2$)
- Quasi-homogeneous, \sim 7 m³ liquid krypton as active medium (27 X_0 deep)
- \rightarrow fully contains γ 's up to 100 GeV
- $\sigma_E/E = 3.2\,\%/\sqrt{E} \oplus 9\%\,/\,E \oplus 0.42\%$ [GeV]
- Spatial resolution $\sim 1\,{
 m mm}$ (at 20 GeV)

Precision measurement of K_{13}^{\pm} form factors

The kaon semileptonic decays

 $K \rightarrow \pi l \nu (K_{l3})$ decays provide the most accurate and theoretically cleanest way to access |Vus|:

 $\Gamma(K_{l3(\gamma)}) = \frac{C_K^2 G_F^2 m_K^5}{192\pi^3} S_{EW} |V_{us}|^2 |f_+(0)|^2 I_K^l(\lambda_{+0}) (1 + \delta_{SU(2)}^l + \delta_{EM}^l)^2$

Experimental inputs:

- $\Gamma(K_{l3(\gamma)})$ Branching ratios and kaon lifetimes.
- I $I_K^l(\lambda_{+0})$ Phase space integral depending on the form factors.

Theory inputs:

- S_{EW} Universal short distance EW corrections (1.0232 \pm 0.0003).
- $f_+(0)$ Form factor at zero momentum transfer.

\mathbf{K}_{13} form factors: Introduction

 K_{13} decays are described by **two form factors** $f_{\pm}(t)$, and the **matrix** element can be written as:

 $M = \frac{G_F}{2} V_{us} (f_+(t)(P_K + P_\pi)^{\mu} \bar{u}_l \gamma_{\mu} (1 + \gamma_5) u_{\nu} + f_-(t) m_l \bar{u}_l (1 + \gamma_5) u_{\nu})$

 $t = q^2$ is the square of the four-momentum transfer to the lepton-neutrino system. $f_{-}(t)$ can only be measured in $K_{\mu 3}$ decays because of $m_e << m_{\mu}$.

Usually form factors are re-formulated to express the vector and scalar exchange contributions:

 $f_+(t)$ is the vector form factor.

 $f_0(t)$ is the scalar form factor which can be described as a linear combination of $f_{\pm}(t)$

$$f_0(t) = f_+(t) + \frac{t}{(m_K^2 - m_\pi^2)} f_-(t).$$

 $f_+(0)$ cannot be measured directly \Rightarrow the form factors are normalized to it:

$$\bar{f}_{+}(t) = \frac{f_{+}(t)}{f_{+}(0)}, \qquad \bar{f}_{0}(t) = \frac{f_{0}(t)}{f_{+}(0)}.$$

Form factor parametrizations

1) Parametrizations using **physical quantities** are called **class 1** parametrizations. They depend on free parameters with a physical meaning.

Pole parametrization:

Assumes the exchange of vector and scalar resonances K^* with spin parity $1^-/0^+$ and masses m_V/m_S .

 $f_{+}(t)$ can be described by $K^{*}(892)$, while for $f_{0}(t)$ no obvious dominance is seen:

$$\bar{f}_{+,0}(t) = rac{m_{V,S}^2}{m_{V,S}^2 - t}$$

2) Parametrizations without a physical meaning are called class 2 parametrizations. They require more free parameters and are extensions in the momentum transfer t.

Linear and quadratic parametrizations:

$$\bar{f}_{+,0}(t) = \begin{bmatrix} 1 + \lambda_{+,0} \frac{t}{m_{\pi}^2} \end{bmatrix} \quad \text{Linear}$$

$$\bar{f}_{+,0}(t) = \begin{bmatrix} 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 \end{bmatrix} \quad \text{Quadratic}$$
More free parameters to be determined \rightarrow Correlations!

No sensitivity to determine λ_0'' with current experiments $\rightarrow \bar{f}_+$ quadratic / \bar{f}_0 linear.

\mathbf{K}_{13} Dalitz plots + corrections

Data recorded 2004 in a special three days run with minimum bias trigger.

Acceptance

Radiative corrections

 $2.5 \times 10^{6} \text{ K}_{\mu3}^{\pm}$ candidates selected $4.0 \times 10^{6} \text{ K}_{e3}^{\pm}$ candidates selected

Very low background for both channels at per-mil level!

Preliminary results (1)

Quadratic $(\times 10^{-3})$	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0
$K_{\mu 3}^{\pm}$	$26.3 \pm 3.0_{\rm stat} \pm 2.2_{\rm syst}$	$1.2\pm1.1_{\rm stat}\pm1.1_{\rm syst}$	$15.7 \pm 1.4_{\rm stat} \pm 1.0_{\rm syst}$
K_{e3}^{\pm}	$27.2\pm0.7_{\rm stat}\pm1.1_{\rm syst}$	$0.7\pm0.3_{\rm stat}\pm0.4_{\rm syst}$	
Pole (MeV/c^2)	m_V		m_S
$K_{\mu 3}^{\pm}$	$873\pm8_{\mathrm{stat}}\pm9_{\mathrm{syst}}$		$1183 \pm 31_{\rm stat} \pm 16_{\rm syst}$
K_{e3}^{\pm}	$879 \pm 3_{ m stat} \pm 7_{ m syst}$		

Preliminary results (2)

Quadratic $(\times 10^{-3})$	λ'_+	$\lambda_{+}^{\prime\prime}$	λ_0
$K_{\mu3}^{\pm}K_{e3}^{\pm}$ combined	26.98 ± 1.11	0.81 ± 0.46	16.23 ± 0.95
Pole (MeV/c^2)	m_V		m_S
$K_{\mu 3}^{\pm} K_{e3}^{\pm}$ combined	877 ± 6		1176 ± 31

- NA48/2 is the first experiment which measured both ${\rm K}_{\rm e3}^{\pm}$ and ${\rm K}_{\mu3}^{\pm}.$
- Results for ${\rm K}_{e3}^{\pm}$ and ${\rm K}_{\mu3}^{\pm}$ from NA48/2 in good agreement.
- NA48/2 preliminary result with high precision, fully competitive to other measurements. Offers the combined result with the smallest error.

ChPT tests:

A new measurement of ${ m K}^{\pm} o \pi^{\pm} \gamma \gamma$ decays

$\mathrm{K}^{\pm} ightarrow \pi^{\pm} \gamma \gamma$: Introduction

ChPT description:

 $\mathcal{O}(p^4)$

Loop diagrams

 \rightarrow cusp at $\pi^+\pi^-$ threshold: $m_{\gamma\gamma} = 2m_{\pi^+}$ (or $z = (m_{\gamma\gamma}/m_K)^2 \approx 0.32$).

[Ecker, Pich, de Rafael, NPB303 (1988) 665]

Rate and spectrum depend on a single unknown $\mathcal{O}(1)$ parameter \hat{c} .

$\mathcal{O}(p^6)$

'Unitarity corrections' increase BR at low \hat{c} and result in a non-zero rate at $m_{\gamma\gamma} \to 0$. [D'Ambrosio, Portoles, PLB386 (1996) 403]

Experimental status:

BNL 787: 31 candidates with 5 bkg. events, BR = $(1.10 \pm 0.32) \times 10^{-6}$.

[PRL79 (1997) 4079]

NA48/2 main data set: measurement hindered by trigger efficiency.

 \rightarrow New strategy: use minimum bias trigger samples from NA48/2 and NA62.

Minimum bias data samples 2004+2007

$\mathrm{K}^{\pm} ightarrow \pi^{\pm} \gamma \gamma$: ChPT fits

- Visible region is above the $K^+ \rightarrow \pi^+ \pi^0$ peak with $m_{\gamma\gamma} = m_{\pi^0}$: $z > 0.2 \text{ or } m_{\gamma\gamma} > 220 \text{ MeV}/c^2.$
- Cusp-like behaviour at $2m_{\pi}$ ($z \approx 0.32$) is clearly observed.

${ m K}^{\pm} ightarrow \pi^{\pm} \gamma \gamma$: Preliminary fit results

Fit results for parameter \hat{c}

$\hat{c} =$	${\cal O}({ m p}^4)$	${\cal O}({ m p}^6)$	Combined
NA48/2	$1.36 \pm 0.33_{\text{stat}} \pm 0.07_{\text{syst}}$	$1.67 \pm 0.39_{\text{stat}} \pm 0.09_{\text{syst}}$	$1.56 \pm 0.22_{\text{stat}} \pm 0.07_{\text{syst}}$
2004	= 1.36 ± 0.34	= 1.67 \pm 0.40	= 1.56 \pm 0.23
NA62	$1.71 \pm 0.29_{\text{stat}} \pm 0.06_{\text{syst}}$	$2.21 \pm 0.31_{\rm stat} \pm 0.08_{\rm syst} = 2.21 \pm 0.32$	$2.00 \pm 0.24_{\text{stat}} \pm 0.09_{\text{syst}}$
2007	= 1.71 \pm 0.30		= 2.00 ± 0.26

ChPT $\mathcal{O}(p^6)$ combined BR fit: BR = $(1.01 \pm 0.06) \times 10^{-6}$.

- All results presented here are preliminary! (E. Goudzovski @ FPCP, May 2012)
- The combined 2004+2007 results contain correlated uncertainties.
- **PDG (= BNL E787)**: BR = $(1.10 \pm 0.32) \times 10^{-6}$.
- In good agreement with NA48/2 preliminary result. (based on partial (40%) data sample with 1164 $K^{\pm} \rightarrow \pi^{\pm}\gamma\gamma$ candidates) (Cristina Morales-Morales @ Moriond QCD 2008)

$\mathrm{K}^{\pm} ightarrow \pi^{\pm} \gamma \gamma$: Fit results + conclusions

- Total number of candidates (from NA48/2 + NA62) = 322.
- Background contamination: $(9 \pm 1)\%$ due to $K^+ \rightarrow \pi^+ \pi^0(\pi^0)(\gamma)$ with photon fusion.
- Very low systematic uncertainties.
- \bullet ChPT $\mathcal{O}(p^4)$ vs $\mathcal{O}(p^6)$ models cannot be discriminated.

Precision lepton universality test through the ratio $\Gamma(K^{\pm} \rightarrow e^{\pm}\nu)/\Gamma(K^{\pm} \rightarrow \mu^{\pm}\nu)$

$R_{\rm K}=\Gamma({\rm K}\to e\nu)/\Gamma({\rm K}\to \mu\nu)$ in the SM

- Precision tests → search for deviations from the SM in rare or forbidden processes
- Leptonic meson decays: $P^+ \rightarrow l^+ \nu$ Angular momentum conservation leads to helicity suppression of SM contribution
- Excellent sub-per-mil accuracy of SM prediction due to cancellation of hadronic uncertainties in the ratio $R_K = K_{e2}/K_{\mu 2}$ (similarly, R_{π} in the pion sector)

$$\begin{aligned} \mathbf{R}_{\mathrm{K}} &= \frac{\Gamma(\mathbf{K}^{\pm} \to \mathbf{e}^{\pm} \nu)}{\Gamma(\mathbf{K}^{\pm} \to \mu^{\pm} \nu)} = \frac{\mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mu}^{2}} \cdot \left(\frac{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mathbf{e}}^{2}}{\mathbf{m}_{\mathbf{K}}^{2} - \mathbf{m}_{\mu}^{2}}\right)^{2} \cdot (1 + \delta \mathbf{R}_{\mathbf{K}}^{\mathrm{rad.corr.}}) \\ &= (2.477 \pm 0.001) \times 10^{-5} \quad [\text{Cirigliano, Rosell, PRL99 (2007) 231801}] \end{aligned}$$

- Radiative corrections $\delta R_K^{\text{rad.corr.}}$ (few %) due to the IB part of the radiative $K \rightarrow e\nu\gamma$ process (by definition included in R_K)
- Measurements of R_K and R_{π} have long been considered as tests of lepton universality
- Strong helicity suppression of R_P enhances sensitivity to non-SM effects

$R_{\rm K}$ = $K_{e2}/K_{\mu 2}$ beyond the SM

2HDM (incl. SUSY) - tree level:

 $\begin{array}{lll} {\rm K}^+ & \to \ l^+\nu \ \mbox{can proceed via exchange of} \\ \mbox{charged Higgs H}^+ \ \mbox{instead of W}^+ \\ \rightarrow \mbox{ratio } {\rm R}_{\rm K} \ \mbox{remains unchanged} \end{array}$

Possible scenario, one loop level:

[Masiero, Paradisi, Petronzio, PRD 74 (2006) 011701]

'Loop effects are predicted to lead to **lepton flavour violating (LFV) couplings** $lH^+\nu_{\tau}$ which give dominant contribution to ΔR_K '

$$\mathbf{R}_{\mathbf{K}}^{\text{LFV}} \approx \mathbf{R}_{\mathbf{K}}^{\text{SM}} \left[1 + \left(\frac{\mathbf{m}_{\mathbf{K}}^4}{\mathbf{M}_{\mathbf{H}^{\pm}}^4} \right) \left(\frac{\mathbf{m}_{\tau}^2}{\mathbf{M}_{\mathbf{e}}^2} \right) | \boldsymbol{\Delta}_{\mathbf{13}} |^2 \text{tan}^6 \, \beta \right]$$

Up to ~1% effect possible in large (not extreme) $\tan \beta$ regime with relatively massive charged Higgs \rightarrow experimentally accessible !

Example:

 $\overline{\Delta_{13}} = 5 \times 10^{-4}, M_{\rm H} = 500 \,\text{GeV}, \tan \beta = 40:$ $R_K^{\mathsf{LFV}} \approx R_K^{\mathsf{SM}}(1 + 0.013)$

Analogous SUSY effects in pion decay are suppressed by factor $(m_\pi/M_K)^4 \approx 6 \times 10^{-3}$ However, large effects expected in B decays due to $(M_B/M_K)^4 \sim 10^4$

Measurement method

$\mathbf{K_{e2}}$ and $\mathbf{K_{\mu 2}}$ candidates collected simultaneously

- Measurement independent of kaon flux.
- A number of systematic effects cancel at first order in the ratio R_K (e.g. reconstruction/trigger efficiencies, time-dependent effects).

A counting experiment in 10 independent bins of lepton momentum

 $R_{\rm K} = \frac{1}{D} \cdot \frac{N(K_{\rm e2}) - N_{\rm B}(K_{\rm e2})}{N(K_{\mu 2}) - N_{\rm B}(K_{\mu 2})} \cdot \frac{A(K_{\mu 2}) \times f_{\mu} \times \epsilon(K_{\mu 2})}{A(K_{\rm e2}) \times f_{\rm e} \times \epsilon(K_{\rm e2})} \cdot \frac{1}{f_{\rm LKr}}$

$N(K_{e2}), N(K_{\mu 2})$:	numbers of selected $\mathbf{K_{12}}$ candidates
$\mathbf{N}_{\mathbf{B}}(\mathbf{K_{e2}}), \mathbf{N}_{\mathbf{B}}(\mathbf{K}_{\mu 2})$:	numbers of background events
$A(K_{e2}), A(K_{\mu 2})$:	geometric acceptances (from MC)
$\mathbf{f_e}, \mathbf{f_{\mu}}$:	measured particle ID efficiencies (from data)
$\epsilon(\mathrm{K_{e2}})/\epsilon(\mathrm{K_{\mu2}}) > 99.9\%$:	$\mathbf{E_{LKr}}$ trigger efficiency
$f_{LKr} = 0.9980(3)$:	global LKr readout efficiency
D = 150:	downscaling factor of the ${f K}_{\mu 2}$ trigger

Main source of systematic uncertainty: $N_B(K_{e2})$.

${\rm K}_{e2}$ and ${\rm K}_{\mu2}$ selection

Large common part (topological similarity)

- One reconstructed track
- Geometrical acceptance cuts
- Decay vertex defined as closest distance of approach of track + nominal kaon axis
- Track momentum 13-65 GeV/c

Kinematic separation

Missing mass $M_{miss}^2 = (P_K - P_l)^2$

- ${
 m P}_{
 m K}$ average measured with ${
 m K}^{\pm}
 ightarrow 3\pi$ decays
- \Rightarrow Sufficient $K_{e2}/K_{\mu 2}$ separation only for lepton momenta $< 30 \, \text{GeV/c}$

Particle identification

E/p | LKr energy deposit / track momentum

< 0.85 for muons, electrons: (0.90-0.95) < E/p < 1.10

 \rightarrow powerful μ^{\pm} suppression in e^{\pm} sample ($\sim 10^6$)

${\rm K}_{\mu 2}$ background in ${\rm K}_{e2}$ sample

Problem:

'Catastrophic' energy loss of muons in LKr \Rightarrow Muons with E/p > 0.95 identified as electrons ($P_{\mu e} \sim 3 \times 10^{-6}$ and momentum-dependent).

 $P_{\mu e} / R_K \sim 10 \% \quad \Rightarrow \quad K_{\mu 2}$ decays represent the major background

Solution: Direct measurement of $P_{\mu e}$

- \Rightarrow Lead wall (9.2 X₀) in front of LKr: suppression of electron contamination from μ -e decay.
- ⇒ Tracks traversing Pb with p>30GeV/c + E/p>0.95 → pure μ samples with catastrophic bremsstrahlung (electron contamination < 10^{-8}).

\mathbf{K}_{e2} candidates and background

 $\sim 90\%$ electron ID efficiency, 16% bkg.

$K_{\mu 2}$ candidates and backgrounds

NA62 final result

 $\mathsf{t_{K}} = (2.488 \pm 0.007_{\text{stat}} \pm 0.007_{\text{syst}}) \times 10$ = $(2.488 \pm 0.010) \times 10^{-5} (0.40\% \text{ precision !})$

NA62 publications:

- Partial (40%) data set: PLB 698 (2011) 105.
- Full data set: paper to be submitted in summer 2012.

Uncertainties summary

Source	$\delta R_{K} \times 10^{5}$
Statistical	0.007
К _{µ2}	0.004
$K_{e2\gamma}(SD^+)$	0.002
K_{e3} , K $_{2\pi}$	0.003
Beam halo	0.002
Matter composition	0.003
Acceptance corr.	0.002
Electron ID	0.001
DCH alignment	0.001
1TRK trigger eff.	0.001
LKr readout eff.	0.001
Total	0.010

$\mathbf{R}_{\mathbf{K}}$: world average and New Physics limits

The Holy Grail: NA62 and the ultra-rare decay ${ m K}^+ ightarrow \pi^+ u ar u$

${\rm K} \to \pi \nu \bar{\nu}$ - The golden modes for kaons

Why $\mathbf{K} \to \pi \nu \bar{\nu}$ decays are among the few golden channels to search for New Physics:

1) They are extremely rare!

Loop-induced FCNC processes, transition described by **Z-penguin** and **box diagrams**:

2) The SM prediction is exceptionally precise!

$$\begin{split} & \mathrm{BR}(\mathrm{K}^{0} \to \pi^{0} \nu \bar{\nu}) = \kappa_{L} \mathrm{Im}(V_{ts}^{*} V_{td})^{2} X(m_{t}, m_{W}) / |V_{us}|^{5} \\ & \mathrm{BR}(\mathrm{K}^{+} \to \pi^{+} \nu \bar{\nu}) = \kappa_{+} (V_{ts}^{*} V_{td})^{2} X(m_{t}, m_{W}) / |V_{us}|^{5} + \mathrm{charm\ contr.} \end{split}$$

The hadronic matrix element can be extracted from the precisely measured $K \rightarrow \pi e \nu$ decay. Charm contribitions in charged mode only, precision recently reduced by NNLO calculation.

 $\begin{aligned} & \mathrm{BR}(\mathrm{K}^{0} \to \pi^{0} \nu \bar{\nu}) = (2.43 \pm 0.39) \times 10^{-11} \\ & \mathrm{BR}(\mathrm{K}^{+} \to \pi^{+} \nu \bar{\nu}) = (7.81 \pm 0.80) \times 10^{-11} \end{aligned}$

The SM prediction is tiny! (Brod et al., PRD83 (2011) 034030) Uncertainty almost only from knowledge on $|V_{ts}|$!

3) In extensions of the SM, the decay remains similarly predictive !

${\rm K} \to \pi \nu \bar{\nu}$ - The golden modes for kaons

Furthermore, $\mathbf{K}^+ \to \pi^+ \nu \bar{\nu}$ allows the measurement of $|V_{td}|$ complementary to those from $\mathbf{B} - \bar{\mathbf{B}}$ mixing and $\mathbf{B} \to \rho \gamma$ (and without requiring input from lattice QCD).

A precision in the branching ratio $\delta BR/BR = 10\%$ would lead to $\delta |V_{td}|/|V_{td}| = 7\%$.

Experimental situation - far from theory precision

 $\begin{array}{ll} {\rm BR}({\rm K}^0 \to \pi^0 \nu \bar{\nu}) < 2.6 \times 10^{-8} (90\% {\rm CL}) & \mbox{E931a (KEK)} & \mbox{(PRD 81 (2010) 072004)} \\ {\rm BR}({\rm K}^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10} & \mbox{E787/E949 (BNL)} & \mbox{(PRL 101 (2008) 191802)} \end{array}$

- BNL result based on 7 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ candidates (2.6 expected bkg.).
- Incoming kaons stopped in target
- \rightarrow low signal efficiency ($\sim 1\%$) and significant background ($\sim 30\%$) due to π scattering.

NA62@CERN aims to collect $\mathcal{O}(100)$ K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$ decays with $\sim 10\%$ background in 2 years of data taking using a novel decay-in-flight-technique.

Principles of NA62 (1)

- K⁺ decay-in-flight-technique to avoid the scattering and the backgrounds introduced by the stopping target.
 - \rightarrow long decay region
- High momentum to improve the background rejection.
 - \rightarrow unseparated hadron beam

Statistics:

```
To measure a 10^{-11} BR, you need a huge amount of kaon decays (\mathcal{O}(10^{13}) in total).
```

 \rightarrow Very high kaon intensity and good signal efficiency.

Systematics:

- $\geq 10^{12}$ background rejection (i.e. $\sim 10\%$ precision bkg. measurement)
- \rightarrow Signal purity and detector redundancy.

Signal signature:

Only one charged track identified as a pion + nothing.

Background:

All the K^+ decay modes!

Kinematical background rejection

92% of total background kinematically **constrained**:

 \rightarrow Definition of the signal region

 $\rightarrow K^+ \rightarrow \pi^+ \pi^0$ 'needle' forces to split it into two parts (Region I + Region II).

Kinematic rejection power:

 $\sim 10^4 \text{ (K}^{\pm} \rightarrow \pi^{\pm} \pi^0 \text{)}, \sim 10^5 \text{ (K}^{\pm} \rightarrow \mu^{\pm} \nu \text{)}.$

 \rightarrow Two signal regions with low background.

8% of total background **not** kinematically **constrained**:

 \rightarrow Radiative decays or decays with neutrino in final state.

- \rightarrow Span across the signal region.
- \rightarrow Rejection relies on excellent vetoes + PID.

Experimental requirements

1) Precise timing to associate the decay to the correct incoming parent particle (K⁺) in a ~ 800 MHz hadron beam.

ightarrow Beam tracker with $\sigma_t \sim 100\,{
m ps.}$ (GigaTracker GTK: three Si pixel stations)

2) Kinematical rejection

- \rightarrow low mass/high resolution spectrometers operating in vacuum.
 - $\mathbf{K^+} \rightarrow \mathbf{GTK}$ / $\pi^+ \rightarrow \mathbf{Straw}$ spectrometer

3) Excellent high efficiency vetoes

 γ veto: Mandatory to veto γ 's from $K^+ \rightarrow \pi^+ \pi^0$

With $p(K^+) = 75 \text{ GeV}/c$ and low momentum π^+ ($p(\pi^+)$: 15-35 GeV/c)

 $\rightarrow p(\pi^0) > 40 \text{ GeV}/c \rightarrow \text{cannot be missed at full angular coverage (~ 10⁸ rejection !)}$

Components: LargeAngleVeto (LAV, reusing OPAL lead glass blocks), NA48 LKr, SAV.

 μ veto: Extreme μ suppression of 10¹¹ required (to kill main decay $K_{\mu 2}$).

ightarrow No single detector can do this, several detector components must work together.

4) Particle identification

- \rightarrow K/ π (CEDAR: Cherenkov kaon tagger).
- $ightarrow \pi/\mu$ (RICH: 17m long, excellent time resolution of \sim 70ps (defines event time)).

The NA62 detector for ${ m K}^+ ightarrow \pi^+ u ar{ u}$

NA62 timeline:

- First technical run in autumn 2012 including many parts of the experiment.
- 2013: Complete detector installation.

• SPS primary protons @ 400 GeV/c.

• 2014-?: Data taking with full detector (driven by CERN accelerator schedule).