The four-pion decays of η' and η

May 31, 2012 | Andreas Wirzba

in collaboration with

Feng-Kun Guo and Bastian Kubis (University of Bonn)

Outline:

- 1 Introduction
- 2 Anomalous processes
- **3** Charged final states: $\eta' \rightarrow 2(\pi^+\pi^-), \eta' \rightarrow \pi^+\pi^-2\pi^0$
 - a chiral perturbation theory and vector-meson dominanceb predictions for the branching ratios
- 4 Neutral final states: $\eta, \eta' \rightarrow 4\pi^0$
 - CP-conserving mechanism; branching ratios
 - **b** CP-violation for $\eta \rightarrow 4\pi^0$ through the QCD θ term

5 Conclusions

Feng-Kun Guo, Bastian Kubis & A.W., Phys. Rev. D **85**, 014014 (2012) [arXiv:1111.5949] see also: Andrzej Kupść & AW, J. Phys. Conf. Ser. **335**, 012017 (2011) [arXiv:1103.3860]

Introduction (1)

What do we know about these four-pion decays? Very little...

η^\prime (958) DECAY MODES	Fracti	ion (Γ _i /Γ)	Confide	ence level	р (MeV/c)
$\frac{2(\pi^+\pi^-)}{\pi^+\pi^-2\pi^0}$	< 2 < 2	2.4 2.6	$^{\times \ 10^{-4}}_{\times \ 10^{-3}}$	90% 90%	372 376
$4\pi^{0}$	< 5	5	imes 10 ⁻⁴	90%	380

Introduction (1)

What do we know about these four-pion decays? Very little...

η' (958) DECAY MODES	Fraction (Γ _i ,	/Γ) Confidence I	<i>p</i> level (MeV/ <i>c</i>)
$\frac{2(\pi^+\pi^-)}{\pi^+\pi^-2\pi^0}$	< 2.4 < 2.6	$\begin{array}{c} \times 10^{-4} \\ \times 10^{-3} \end{array}$	90% 372 90% 376
4π ⁰	< 5	$\times 10^{-4}$	90% 380

A little puzzle from the PDG:

→ see a bit later for (attempted) explanation

Introduction (1)

What do we know about these four-pion decays? Very little...

η' (958) DECAY MODES	Fraction (Γ_{i}	/Γ) Confidence	p level (MeV/c)
$2(\pi^+\pi^-) \ \pi^+\pi^-2\pi^0$	< 2.4 < 2.6	$\begin{array}{c} \times 10^{-4} \\ \times 10^{-3} \end{array}$	90% 372 90% 376
$4\pi^{0}$	< 5	$\times 10^{-4}$	90% 380

• A little puzzle from the PDG:

η DECAY MODES		Fraction ((Γ _i /Γ) Co	Scale factor/ nfidence level	р (MeV/c)	
Charge conjugation (C), Parity (P), Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes						
$4\pi^{0}$	P,CP	< 6.9	× 10 ⁻⁷	7 CL=90%	40	

 \rightarrow see a bit later for (attempted) explanation

If you know any theoretical calculations for these, please tell us!
 e.g.: quark-model calculation of D. Parashar (1979) violates η' → 2(π⁺π⁻) bound

Introduction (2)

In principle, these are not terribly forbidden ...

- not isospin-forbidden, not electromagnetic
- ... except for:
- phase space

$$\begin{aligned} & M_{\eta'} - 4M_{\pi} = 399.5 \,\text{MeV} \cdots 417.9 \,\text{MeV} \\ & M_{\eta} - 4M_{\pi^0} = 7.9 \,\text{MeV} \;, \quad M_{\eta} - 2(M_{\pi^{\pm}} + M_{\pi^0}) = -1.2 \,\text{MeV} \end{aligned}$$

Introduction (2)

In principle, these are not terribly forbidden ...

- not isospin-forbidden, not electromagnetic
- ... except for:
- phase space

$$M_{\eta'} - 4M_{\pi} = 399.5 \,\text{MeV} \cdots 417.9 \,\text{MeV}$$

 $M_{\eta} - 4M_{\pi^0} = 7.9 \,\text{MeV} \ , \quad M_{\eta} - 2(M_{\pi^{\pm}} + M_{\pi^0}) = -1.2 \,\text{MeV}$

- odd number of pseudoscalars
 - → process of odd intrinsic parity, "anomalous"
- Wess–Zumino–Witten (WZW) term in QCD induces
 - \triangleright triangle-anomaly: $\pi^0 \rightarrow \gamma\gamma$, $\eta \rightarrow \gamma\gamma$...
 - ▷ box-anomaly: $\gamma \pi \rightarrow \pi \pi$, $\eta \rightarrow \pi \pi \gamma \dots$
 - pentagon anomaly where?

Anomalous processes

 amplitudes of anomalous/odd-intrinsic-parity processes involve totally antisymmetric ε_{μναβ} tensor

e.g.
$$\mathcal{A}_{WZW}(K^+K^- \to \pi^+\pi^-\pi^0) = \frac{3}{4\pi^2 F_{\pi}^5} \epsilon_{\mu\nu\alpha\beta} p_{\pi^+}^{\mu} p_{\pi^-}^{\nu} p_{K^+}^{\alpha} p_{K^-}^{\beta}$$

 $\Rightarrow \mathcal{O}(p^4)$ in chiral counting; strength fixed by F_{π}

 consequence: pentagon anomaly / PPPPP process does not allow two pseudoscalars to be in a relative S-wave effectively PPPS, no 4 independent four-vectors to contract

Anomalous processes

 amplitudes of anomalous/odd-intrinsic-parity processes involve totally antisymmetric ε_{μναβ} tensor

e.g.
$$\mathcal{A}_{WZW}(K^+K^- \to \pi^+\pi^-\pi^0) = \frac{3}{4\pi^2 F_{\pi}^5} \epsilon_{\mu\nu\alpha\beta} p_{\pi^+}^{\mu} p_{\pi^-}^{\nu} p_{K^+}^{\alpha} p_{K^-}^{\beta}$$

 $\Rightarrow \mathcal{O}(p^4)$ in chiral counting; strength fixed by F_{π}

 consequence: pentagon anomaly / PPPPP process does not allow two pseudoscalars to be in a relative S-wave effectively PPPS, no 4 independent four-vectors to contract

•
$$\eta' \rightarrow 2(\pi^+\pi^-), \eta' \rightarrow \pi^+\pi^-2\pi^0$$
 P-wave-dominated

- $\eta' \rightarrow 4\pi^0, \ \eta \rightarrow 4\pi^0$: Bose symmetry forbids P-wave \Rightarrow D-waves
 - ▷ $\eta \rightarrow 4\pi^0$ 'CP-forbidden' = S-wave CP-forbidden due to tiny phase space \rightarrow see later

Anomalous processes

 amplitudes of anomalous/odd-intrinsic-parity processes involve totally antisymmetric ε_{μναβ} tensor

e.g.
$$\mathcal{A}_{WZW}(K^+K^- \to \pi^+\pi^-\pi^0) = \frac{3}{4\pi^2 F_{\pi}^5} \epsilon_{\mu\nu\alpha\beta} p^{\mu}_{\pi^+} p^{\nu}_{\pi^-} p^{\alpha}_{K^+} p^{\beta}_{K^-}$$

 $\Rightarrow \mathcal{O}(p^4)$ in chiral counting; strength fixed by F_{π}

 consequence: pentagon anomaly / PPPPP process does not allow two pseudoscalars to be in a relative S-wave effectively PPPS, no 4 independent four-vectors to contract

•
$$\eta' \rightarrow 2(\pi^+\pi^-), \, \eta' \rightarrow \pi^+\pi^- 2\pi^0$$
 P-wave-dominated

- $\eta' \rightarrow 4\pi^0, \ \eta \rightarrow 4\pi^0$: Bose symmetry forbids P-wave \Rightarrow D-waves
 - ▷ $\eta \rightarrow 4\pi^0$ 'CP-forbidden' = S-wave CP-forbidden due to tiny phase space \rightarrow see later
- flavour structure of WZW term: pentagon anomaly genuinely SU(3), doesn't work without kaons: $\pi^+\pi^-\pi^0 K \bar{K} \qquad \eta \pi \pi K \bar{K} \qquad \eta (K \bar{K})^2$ May 31, 2012 Andreas Wirzba The four-pion decays of η' and η

$\eta^\prime ightarrow 2(\pi^+\pi^-),\,\eta^\prime ightarrow \pi^+\pi^-2\pi^0$ in ChPT

 leading contribution to η' → π⁺(p₁)π⁻(p₂)π⁺(p₃)π⁻(p₄) at O(p⁶)! (we assume standard ηη' mixing):

- $\eta' \rightarrow \pi^+ \pi^- 2\pi^0$ amplitude the same
- $\mathcal{O}(p^6)$ counterterm Lagrangian $\propto C_i^W$ canceling μ -dependence known Bijnens, Girlanda, Talavera 2002
- How to estimate finite counterterm contribution ∝ C^{Wr}₁₂(μ)?

May 31, 2012

Andreas Wirzba

The four-pion decays of η' and η

Resonance saturation via HLS model (1)

 estimate counterterms via resonance saturation here: vector mesons (P-waves!)

has been studied for anomalous sector
 Kampf, Novotný 2011

- here: simpler, but more predictive framework: hidden local symmetry (HLS)
 Bando, Kugo, Yamawaki 1988
 - extension of chiral perturbation theory with vectors as gauge bosons of enlarged symmetry group
 - ▷ effectively only 3 couplings in the anomalous sector; need 2:

 $c_1 - c_2 \approx c_3 \approx 1$ or $c_1 - c_2 \approx 1.21$, $c_3 \approx 0.93$

Benayoun et al. 2010

Resonance saturation via HLS model (2)

• HLS estimate for $\mathcal{O}(p^6)$ couplings contributing to PPPPP:

$$C_1^{Wr}(M_{\rho}) = -2C_{12}^{Wr}(M_{\rho}) = \frac{3(c_1 - c_2 + c_3)}{128\pi^2 M_{\rho}^2}$$

• relative importance of ρ vs. kaon loop contributions:

$$F'(0) = \frac{1}{8\pi^2 (4\pi F_\pi)^2} \left\{ \underbrace{3(c_1 - c_2 + c_3) \frac{(4\pi F_\pi)^2}{2M_\rho^2}}_{\approx 6.7} - \underbrace{\left(1 + 2\log\frac{M_K}{M_\rho}\right)}_{\approx 0.1} \right\}$$

→ totally dominated by vector-meson contributions!

Resonance saturation via HLS model (2)

• HLS estimate for $\mathcal{O}(p^6)$ couplings contributing to PPPPP:

$$C_1^{Wr}(M_{\rho}) = -2C_{12}^{Wr}(M_{\rho}) = \frac{3(c_1 - c_2 + c_3)}{128\pi^2 M_{\rho}^2}$$

$$F'(0) = \frac{1}{8\pi^2 (4\pi F_\pi)^2} \left\{ \underbrace{3(c_1 - c_2 + c_3) \frac{(4\pi F_\pi)^2}{2M_\rho^2}}_{\approx 6.7} - \underbrace{\left(1 + 2\log\frac{M_K}{M_\rho}\right)}_{\approx 0.1} \right\}$$

→ totally dominated by vector-meson contributions!

• kinematically accessible in $\eta' \rightarrow 4\pi$ decays:

$$\sqrt{\mathsf{s}_{ij}} \leq \mathsf{M}_{\eta'} - 2\mathsf{M}_{\pi} pprox \mathsf{680}\,\mathsf{MeV}$$

compared to M_{ρ} = 775 MeV, Γ_{ρ} = 149 MeV

- \triangleright retain full ρ propagators for phenomenologically reliable description
- \triangleright takes care of P-wave $\pi\pi$ final-state interactions

Results: branching ratios

- calculate branching ratios as functions of HLS couplings
- isospin limit:

$$2 \times \mathsf{BR}(\eta' \to 2(\pi^+\pi^-)) = \mathsf{BR}(\eta' \to \pi^+\pi^-2\pi^0)$$

adjust phase space: use $M_{\pi^{\pm}}$ and $(M_{\pi^{\pm}} + M_{\pi^{0}})/2$ respectively

Results: branching ratios

- calculate branching ratios as functions of HLS couplings
- isospin limit:

$$2 \times \mathsf{BR}\left(\eta' \to 2(\pi^+\pi^-)\right) = \mathsf{BR}\left(\eta' \to \pi^+\pi^-2\pi^0\right)$$

adjust phase space: use $M_{\pi^{\pm}}$ and $(M_{\pi^{\pm}} + M_{\pi^{0}})/2$ respectively

results:

 $BR(\eta' \to 2(\pi^+\pi^-)) = [0.15(c_1 - c_2)^2 + 0.47(c_1 - c_2)c_3 + 0.37c_3^2] \times 10^{-4}$ $= \{1.0, 1.1\} \times 10^{-4}$

$$BR(\eta' \to \pi^{+}\pi^{-}2\pi^{0}) = [0.35(c_{1}-c_{2})^{2} + 1.09(c_{1}-c_{2})c_{3} + 0.87c_{3}^{2}] \times 10^{-4}$$
$$= \{2.3, 2.5\} \times 10^{-4}$$

• remember: $BR_{PDG}(\eta' \to 2(\pi^+\pi^-)) < 2.4 \times 10^{-4}$

$$\mathsf{BR}_{\mathsf{PDG}}(\eta' \to \pi^+ \pi^- 2\pi^0) < 2.6 \times 10^{-3}$$

 \rightarrow there is room for (experimental) improvement!

May 31, 2012

Chiral counting for $\eta' \rightarrow 4\pi^0$

- remember: $\pi^0\pi^0$ pairs have to emerge in relative D-waves
- find: this increases the chiral power of $\eta' \rightarrow 4\pi^0$ to $\mathcal{O}(p^{10})!$

Chiral counting for $\eta' \rightarrow 4\pi^0$

- remember: $\pi^0\pi^0$ pairs have to emerge in relative D-waves
- find: this increases the chiral power of $\eta' \to 4\pi^0$ to $\mathcal{O}(p^{10})!$
- examples:

- • vertex needs to be $\mathcal{O}(p^6)$, as WZW term does not contain 5-meson-vertices with 2 π^0
- ▷ vertex has to be D-wave, that is at least $\mathcal{O}(p^4)$
- ▷ one-loop + $\mathcal{O}(p^6)$ vertex + $\mathcal{O}(p^4)$ vertex $\Rightarrow \mathcal{O}(p^{10})$

Chiral counting for $\eta' \rightarrow 4\pi^0$

- remember: $\pi^0\pi^0$ pairs have to emerge in relative D-waves
- find: this increases the chiral power of $\eta' \to 4\pi^0$ to $\mathcal{O}(p^{10})!$
- examples:

- • vertex needs to be $\mathcal{O}(p^6)$, as WZW term does not contain 5-meson-vertices with 2 π^0
- ▷ vertex has to be D-wave, that is at least $\mathcal{O}(p^4)$
- ▷ one-loop + $\mathcal{O}(p^6)$ vertex + $\mathcal{O}(p^4)$ vertex ⇒ $\mathcal{O}(p^{10})$
- $\succ \epsilon_{\mu\nu\alpha\beta} p_1^{\mu} p_2^{\nu} p_3^{\alpha} p_4^{\beta} \times P(s_{ij}): \text{ requires polynomial } P \text{ of at least} \\ \text{ 3rd power in } s_{ij} \text{ to yield totally symmetric amplitude}$

we are not going to do an $\mathcal{O}(p^{10})$ [= three-loop] calculation...

Something you can calculate for $\eta' \rightarrow 4\pi^0$

 can calculate the complete imaginary part at O(p¹⁰) (given by charged-pion intermediate states)

Something you can calculate for $\eta' \rightarrow 4\pi^0$

- can calculate the complete imaginary part at O(p¹⁰) (given by charged-pion intermediate states)
- use the full vector-meson-dominated $\eta' \rightarrow \pi^+ \pi^- 2\pi^0$ amplitude

Something you can calculate for $\eta' \rightarrow 4\pi^0$

- can calculate the complete imaginary part at O(p¹⁰) (given by charged-pion intermediate states)
- use the full vector-meson-dominated $\eta' \rightarrow \pi^+ \pi^- 2\pi^0$ amplitude
- "trick" to reconstruct the full ππ D-wave final-state amplitude via Omnès function (neglecting any crossed-channel effects):

at threshold:
$$\operatorname{Im} \Omega_2^0(s) \approx \sqrt{1 - \frac{4M_{\pi}^2}{s}} \times t_2^0(s), \quad t_2^0: \pi\pi \text{ partial wave}$$

 $f_2 \text{ dominance:} \quad \Omega_2^0(s) \approx \frac{M_{f_2}^2}{M_{f_2}^2 - s}$
note: *full* result far from f_2 dominance (as $\rho\rho$ not "short-ranged")

Andreas Wirzba

Branching ratios for $\eta' \rightarrow 4\pi^0$, $\eta \rightarrow 4\pi^0$

results for branching ratios:

$$BR(\eta' \to 4\pi^{0}) = [0.4 (c_{1} - c_{2})^{2} + 1.6 (c_{1} - c_{2})c_{3} + 1.7 c_{3}^{2}] \times 10^{-8}$$
$$= \{3.7, 3.9\} \times 10^{-8}$$
$$BR(\eta \to 4\pi^{0}) = [0.4 (c_{1} - c_{2})^{2} + 1.1 (c_{1} - c_{2})c_{3} + 1.0 c_{3}^{2}] \times 10^{-30}$$
$$= \{2.4, 2.6\} \times 10^{-30}$$

Branching ratios for $\eta' \rightarrow 4\pi^0$, $\eta \rightarrow 4\pi^0$

results for branching ratios:

$$BR(\eta' \to 4\pi^{0}) = [0.4 (c_{1} - c_{2})^{2} + 1.6 (c_{1} - c_{2})c_{3} + 1.7 c_{3}^{2}] \times 10^{-8}$$
$$= \{3.7, 3.9\} \times 10^{-8}$$
$$BR(\eta \to 4\pi^{0}) = [0.4 (c_{1} - c_{2})^{2} + 1.1 (c_{1} - c_{2})c_{3} + 1.0 c_{3}^{2}] \times 10^{-30}$$
$$= \{2.4, 2.6\} \times 10^{-30}$$

- conclusions...
 - \triangleright ... for the η' :

D-wave mechanism suppressed $\eta' \rightarrow 4\pi^0$ by 3–4 orders of magnitude compared to charged-pion final states

 \triangleright ... for the η :

D-wave plus tiny phase space suppresses this enormously \rightarrow any signal indeed sign of CP-violation

Suppression of double-f₂ mechanism

An alternative decay mechanism via two virtual f_2 mesons

- is formally also of chiral order \$\mathcal{O}(p^{10})\$
- but is heavily suppressed

$$\begin{split} \mathsf{BR}\big(\eta' \to f_2 f_2 \to 4\pi^0\big) &\approx 4 \times 10^{-14} , \quad \mathsf{BR}\big(\eta \to f_2 f_2 \to 4\pi^0\big) &\approx 3 \times 10^{-35} \\ &\text{versus} \\ \mathsf{BR}\big(\eta' \to \rho\rho \to 4\pi^0\big) &\approx 4 \times 10^{-8} , \quad \mathsf{BR}\big(\eta \to \rho\rho \to 4\pi^0\big) &\approx 3 \times 10^{-30} \end{split}$$

CP-violating $\eta \rightarrow 4\pi^0$ decay via the θ -term

- CP-violating term in QCD: θ -term, linked to $U(1)_A$ anomaly
- can be treated on effective Lagrangian level

Crewther et al. 1980; Pich, de Rafael 1991

• induces e.g. neutron electric dipole moment and $\eta \stackrel{\ensuremath{\not QP}}{\longrightarrow} 2\pi$

... but also CP-violating S-wave $\eta \rightarrow 4\pi^0$ amplitude:

$$\mathcal{A}\left(\eta \xrightarrow{\mathcal{Q}\mathsf{P}} 4\pi^{0}\right) = -\sqrt{\frac{2}{3}} \frac{M_{\eta'}^{2}}{3F_{\pi}^{3}} \times \overline{\theta}_{0}$$

resulting branching ratio:

$$\mathsf{BR}\left(\eta \xrightarrow{\mathsf{QP}} 4\pi^{0}\right) = 5 \times 10^{-5} \times \overline{\theta}_{0}^{2} \,, \qquad \left[\mathsf{BR}(\eta' \xrightarrow{\mathsf{QP}} 4\pi^{0}) = 9 \times 10^{-2} \times \overline{\theta}_{0}^{2}\right]$$

- \rightarrow if $\overline{\theta}_0$ were $\mathcal{O}(1)$, this would demonstrate the enhancement of the CP-violating S-wave mechanism
- current limits from neutron electric dipole moment: $\bar{\theta}_0 \lesssim 10^{-11}$ Ottnad et al. 2009

Summary / Conclusions

Analysis of (yet unmeasured) $\eta, \eta' \rightarrow 4\pi$ decays:

• $\eta' \to 2(\pi^+\pi^-), \, \eta' \to \pi^+\pi^-2\pi^0$:

P-wave / $\rho\rho$ dominated; predictions (uncertainty ~ $O(1/N_c)$)

 $\mathsf{BR}\big(\eta' \to 2(\pi^+\pi^-)\big) \approx (1.0 \pm 0.3) \times 10^{-4}, \ \mathsf{BR}\big(\eta' \to \pi^+\pi^-2\pi^0\big) \approx (2.4 \pm 0.7) \times 10^{-4}$

η' → 4π⁰, η → 4π⁰: chirally suppressed,
 D-wave dominated; prediction via ρρ + f₂ mechanism:
 BR(η' → 4π⁰) ≈ 4 × 10⁻⁸, BR(η → 4π⁰) ≈ 3 × 10⁻³⁰

 \longrightarrow any excess probably sign of CP violation

• CP violation for $\eta \rightarrow 4\pi^0$ via QCD θ term:

$$\mathsf{BR}\left(\eta \stackrel{\text{QP}}{\longrightarrow} 4\pi^0\right) \approx 5 \times 10^{-5} \times \bar{\theta}_0^2 \quad (\text{but } \bar{\theta}_0 \lesssim 10^{-11})$$

More details: F.-K. Guo, B. Kubis & A.W., Phys. Rev. D 85, 014014 (2012) [arXiv:1111.5949]

May 31, 2012