# Strangeness production with FOPI @ SIS 18 (GSI/Darmstadt)



Introduction / Motivation / History of strangeness in heavy-ion collisions @ SIS 18 (kaons in dense matter)

Detector

New results – correlations (with respect to the bulk, with other reaction products)

Perspective

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

# Heavy-ion collisions @ SIS 18 (up to 2 AGeV)

BUU by G. Q. Li, C. M. Ko





Strangeness produced in the early stage

High density of the medium (3ρ₀)
Messengers from the dense phase
Modifications of mass/KN potential expected
Affects production and propagation
Puzzling esp. in the case of K-

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

# Restoration of spontaneously broken chiral symmetry ?



# **Evidence for in-medium modifications**





New data are consistent with earlier data in range -1.2 <  $y^{(0)}$  < -0.65,  $\sigma_{geo}$ =200mb P.Crochet et al., PLB 486, 6 (2000)

Former conclusion: Data favor the presence of repulsive potential  $U(\rho=\rho_0) = 20 \text{ MeV}$  Model dependant (comparison to BUU transport)

... and much, much, much more

#### (FOPI, KaoS)

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012



## **Strangeness program of FOPI**



#### Data from elementary reactions

**K**<sup>0</sup>, **A production and phase space distributions in**   $\pi^-$  + C, Al, Cu, Sn, Pb @ 1.15 GeV/c, (S273, 2004) **K**<sup>0</sup>, **K**<sup>+</sup>, **K**<sup>-</sup>, **\phi**, **A production in**   $\pi^-$  + LH<sub>2</sub>, C, Pb @ 1.7 GeV/c, (S339, 2011) **Kaonic bound state ppK<sup>-</sup> in** p + p @ 3 GeV, 80M (S349, 2009)

#### Systematics of strangeness data from heavy-ion reactions

| K <sup>0</sup> , K <sup>+</sup> , K <sup>-</sup> , | <b>φ</b> , <b>K</b> *, Λ, Σ*(13 | 85) product | production and flow |  |  |
|----------------------------------------------------|---------------------------------|-------------|---------------------|--|--|
| System                                             | beam energy                     | events      | (proposal, year)    |  |  |
| Ni + Ni                                            | 1.93 AGeV,                      | 100M        | (S261, 2003)        |  |  |
| AI + AI                                            | 1.91 AGeV,                      | 200M        | (S297, 2005)        |  |  |
| Ni + Ni                                            | 1.91 AGeV,                      | 80M (S      | 325, 2008)          |  |  |
| Ni + Pb                                            | 1.91 AGeV,                      | 100M (S     | 338, 2009)          |  |  |
| Ru+ Ru                                             | 1.7 AGeV,                       | 210M (S     | 338, 2009)          |  |  |

#### Search for Kaonic bound states Hypernuclei

in heavy-ion reactions

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

### FOPI is a very good detector



**FOPI** Collaboration

## **Resistive Plate Chambers - TOF Barrel**





#### First RPC-TOF system in the world Prototyping the TOF system of CBM @ FAIR

Time resolution from fast pion tracks (p<sub>lab</sub>>0.5GeV/c)



K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## **Identification of charged particles**









... up to 1 GeV/c – CDC-TOF essential

in the CDC/TOF acceptance (mid-rapidity not fully covered)

#### **Extended thanks to RPC**

Meson 2012 Krakow, 31.05-05.06.2012 Strangeness Production with FOPI

Uniwersytet Warszawski, Universitat Heidelberg FOPI Collaboration

# Identification of particles by decay



Background reconstructed by event mixing

Topological cuts decisive for the amount of background (S/B ~ 10 no problem)

Mass resolution (in the case of weak decay)  $\sigma$ >4 MeV (depending on momenta of daugthers, intrinsic width not extracted)

# Integrated flow of K+ and K- in peripheral coll.



Ni+Ni at 1.91 AGeV (S325 + S325e data) σ = 1.5 b b<sub>geo</sub>= 7 fm

Models with FOPI acceptance filter

Potentials with linear density dependence.

 At  $\rho = \rho_0$ :

 U<sub>HSD</sub>(K<sup>+</sup>)
 20 MeV

 U<sub>IQMD</sub>(K<sup>+</sup>)
 40 MeV

 U<sub>HSD</sub>(K<sup>-</sup>)
 50 MeV

 U<sub>HSD</sub>(K<sup>-</sup>)
 90 MeV



K<sup>+</sup> sideflow much smaller than expectation from model calculations.

- K<sup>-</sup> sideflow compatible with zero, in variance with model expectiations.
- $K^+$  elliptic flow negativ  $\rightarrow$  out of plane emission.
- K<sup>-</sup> elliptic flow consistent with zero.

#### The problem came back, theorist stepped back

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

# FOPI is avery good detector...





K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## What is more rare at SIS than strangeness?

#### Nothing - wrong answer



#### Multi-strangeness, correlations – good answer

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## **Trivial correlations** reconstruction of $\phi(1020) \rightarrow K+K-$



Taking into account  $\phi \to K^+K^-$  branching ratio:  $(48.9 \pm 0.5)\%...$  $(14 \pm 4^{+2}_{-1})\%$ 

...  $K^-$  mesons comes from  $\phi$  decays.

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg **FOPI** Collaboration

S/B~1

Meson 2012 Krakow, 31.05-05.06.2012



# $\Lambda^0 \pi$ trivial correlations - not trivial reconstruction



 $\Sigma^{-,+}$ (1385) ->  $\Lambda^{0}$ + $\pi^{-,+}$  ,with B.R. 87%



| $\pi(\Lambda)$                                                                                                                                    | <b>p(Λ)</b>                                                                                                    | Λ                                                                         | $\pi(\Sigma^{*\pm})$             |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------|
| 0 <m1<0.5< td=""><td>0.6<m2<1.5< td=""><td>1.106<m<1.126< td=""><td>0.05<m3<0.35< td=""></m3<0.35<></td></m<1.126<></td></m2<1.5<></td></m1<0.5<> | 0.6 <m2<1.5< td=""><td>1.106<m<1.126< td=""><td>0.05<m3<0.35< td=""></m3<0.35<></td></m<1.126<></td></m2<1.5<> | 1.106 <m<1.126< td=""><td>0.05<m3<0.35< td=""></m3<0.35<></td></m<1.126<> | 0.05 <m3<0.35< td=""></m3<0.35<> |
| d01 >1.9                                                                                                                                          | d02 >0.8                                                                                                       | d0 <0.5                                                                   | d0 <1                            |
| nh1>25                                                                                                                                            | nh2>30                                                                                                         | 4 <dv0v2<20< td=""><td>nh3&gt;37</td></dv0v2<20<>                         | nh3>37                           |
| σxy1<0.1                                                                                                                                          | σxy2<0.1                                                                                                       | <b> Δφ &lt;4</b>                                                          | σxy3<0.1                         |
| pt1>0.1                                                                                                                                           | pt2>0.2                                                                                                        | pt>0.3                                                                    | pt3>0.1                          |
| σz1<20                                                                                                                                            | σz2<20                                                                                                         | dvz12 <30                                                                 | σz3<20                           |
| z01 <50                                                                                                                                           | z02 <50                                                                                                        | CTR                                                                       | z03 <25                          |

More than 30 selection cuts Distance to vertex decisive Rejection of intersecting tracks & rotation of events to the R.P. -> description of the background

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012



## First sub-threshold measurement of $\Sigma^*$





AI+AI @ 1.9 AGeV  $E_{trh}$ ~ 2.33 GeV 3000  $\Sigma$  in 4\*10<sup>8</sup> events S/B~0.03 Width agrees with PDG

Similar analysis for K\*(892)<sup> $\circ$ </sup> -> K<sup>+</sup> $\pi$ <sup>-</sup>

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## Good enough to (positively?) verify models





All independent ratios from one experiment Some of them deep sub-threshold Statistical model does quite well, except the  $\phi$ 

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## **Do kaons modify the matter ?**



#### **Strong K-N attraction**





#### **Compact and dense**

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

### **Deeply bound kaonic clusters**





**FOPI** Collaboration

## p∧ outcome of FOPI

200

180

160

140 120 100

> 80 60

> 40

20

2050

NUMBER OF EVENTS

4

Excess found, but about 100 MeV too much bound No evidence of a ppK- cluster Could be a final-state interaction





K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## **nppK-** -> $d\Lambda$ outcome of FOPI





Excess visible

Not at the threshold

Not due to the cusp effect

Binding energy & width compatible to predictions Significance large

Meson 2012 Krakow, 31.05-05.06.2012

#### ... compared to other experiments



#### The result certainly needs more attention

#### Not every structure in inv. mass corresponds to a real signal

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012



# $d\Lambda$ is also a hypernucleus !



#### Mesonic 2body decay ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ in Ni+Ni @ 1.9 AgeV





6\*10<sup>7</sup> events, 50% central

**Detection rate: 10<sup>-6</sup>/event** 

S/B ~  $10^{-1}$ , Significance ~ 6

#### Lifetime agrees with world-data

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

# **Comparison to thermal model**





A. Andronic et al, PLB 697 (2011) 203

# Thermal model fails (an order of magnitude) (Limited experimental acceptance)

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

#### **Phase-space distribution**





K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

## **Production mechanism**





|                               | $\frac{4}{\Lambda}H$ | $^4_{\Lambda}He$ | $^{5}_{\Lambda}He$ |
|-------------------------------|----------------------|------------------|--------------------|
| total yield $(\mu b)$         | 2.2                  | 4                | 1.4                |
| pionic contribution $(\mu b)$ | 0.3                  | 0.2              | 0.03               |

T. Gaitanos et al. / Physics Letters B 675 (2009) 297 (GiBUU+SMM)

#### Only an idea of theorists

#### No experimental verification

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012







$$\frac{\gamma}{\sigma_{\rm r}} \frac{\mathrm{d}^3 \sigma(A\,\mathrm{F})}{\mathrm{d}k_{\rm c}^3} = \left(\frac{m_{\rm A} + m_{\rm F}}{m_{\rm A}m_{\rm F}}\right)^3 S_{\rm AF} \left(\frac{\gamma}{\sigma_{\rm r}} \frac{\mathrm{d}^3 \sigma^{(A)}}{\mathrm{d}k_{\rm c}^3}\right) \left(\frac{\gamma}{\sigma_{\rm r}} \frac{\mathrm{d}^3 \sigma^{(F)}}{\mathrm{d}k_{\rm c}^3}\right)$$
  
H.Bando et al. NPA 501,1900 (1989)

Coalescence process  $(\Lambda X \rightarrow _{\Lambda} Y)$ 



| Particle | $P(^{3}_{\Lambda}He)$  | $P(\Lambda)$         | P(d)                 | SIF                    | Error |
|----------|------------------------|----------------------|----------------------|------------------------|-------|
| Region A | $3.4 \times 10^{-4}$   | $8.0 \times 10^{-4}$ | $1.7 \times 10^{-1}$ | 2.5                    | 6.8%  |
| Region B | $< 3.0 \times 10^{-5}$ | $2.1 \times 10^{-3}$ | $1.6 \times 10^{-1}$ | $< 8.8 \times 10^{-2}$ | 23.6% |

#### **Coalescence does not work very well**

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

# More hyper-nuclei





K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012

#### Advantages of hyper-nuclei production in heavy-ion collisions



Large momentum transfer and recoil (more) precise lifetime measurement small detectors in fixed-target experiments

Rare fragments population of n/p-rich isotopes

Multi-strange objects production of XXA-Hypernuclei

## FOPI ? tomorrow ?!





#### Installation and operation of the **PANDA** prototype GEM-TPC with a supreme spatial resolution and forward geometrical acceptance





K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg **FOPI** Collaboration

Meson 2012 Krakow, 31.05-05.06.2012

with FOPI

# Ready to go for double strangeness production



Production of  $\Xi^$ in  $\pi$  induced reactions at 2.5 GeV/c



K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012





#### Unfortunately FOPI will never see them

#### The program has been turned down

K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012



#### **Last Slide**



K.Wisniewski Uniwersytet Warszawski, Universität Heidelberg FOPI Collaboration Meson 2012 Krakow, 31.05-05.06.2012