Exclusive Central Meson Production in Proton Antiproton Collisions at the Tevatron

<u>Maria Żurek</u> together with Artur Święch, Jagiellonian University, Kraków

on behalf of the CDF Collaboration

Contents

- Physics Motivation
- CDF Detector Setup
- Low Mass Central Hadronic State Analysis
- Conclusions

Physics Motivation Double Pomeron Exchange

Pomeron:

- Carrier of 4-momentum between protons
- Strongly interacting color singlet combination of quarks or/and gluons
- Quantum numbers of vacuum
- LO: P = gg

pseudo-rapidity

pseudo-rapidity

Analysis GXG reaction

$$\overline{p} + p \rightarrow \overline{p} + GAP + X + GAP + p$$

X (in this study):

- hadron pair mostly $\pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$
- central $y \approx 0$
- between rapidity gaps $\Delta y \approx 4$
- Q = S = 0, C = +1, J = 0 or 2, I=0

Expected to be dominated by DPE in the t-channel!

Collider Detector at Fermilab

FERMILAB'S ACCELERATOR CHAIN

√s = 1960 GeV √s = 900 GeV

Collider Detector at Fermilab

- we do not detect outgoing protons
- forward detectors in veto

- BSC Beam Shower Counters
- CLC Cherenkov
 Luminosity Counters
- PCAL Plug Calorimeter

Trigger requirement:

- 2 central ($|\eta|$ <1.3) towers with Et > 0.5 GeV
- PCAL (2.11<|η|<3.64) in veto
- CLC (3.75<|η|<4.75) in veto
- BSC1 (5.4<|η|<5.9) in veto

Gap cuts:

To determine noise levels in subdetectors we divide zero-bias sample from same periods into two sub-samples:

No Interaction:	Interaction: At least one	
 No tracks and No CLC hits and No muon stubs 	 Track or CLC hit or Muon stub 	

Examples of exclusive requirements – empty forward detectors

CDF Run II Preliminary, \s=1960GeV

CDF Run II Preliminary, \s=1960GeV

Exclusivity cuts

To determine exclusive 2-4 tracks we apply similar technique in central region, just excluding cones of R=0.3 around each track extrapolation.

$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

CDF Run II Preliminary, \s=1960GeV

Additional cuts:

- quality of tracks
- cosmic ray rejection
- 2 oppositely charged tracks

Examples: d_0 , |Missing P_t |

Low Mass Central Hadronic State Analysis Exclusive efficiency for 1960 GeV

• Determination of efficiency of having no-pileup using zero-bias sample.

We measure ratio of empty events (all detectors on noise level) to all events.

- Exponential drop with bunch luminosity
- Slope corresponds to total detected inelastic cross section

CDF Run II Preliminary, \s=1960GeV

Low Mass Central Hadronic State Analysis Simple model of acceptance

Generation X $\rightarrow \pi^+\pi^-$

Flat distribution in:

- rapidity of X (-2.1 2.1)
- mass of X $(0 5.0 \text{ GeV/c}^2)$
- P_t of X (0 2.5 GeV/c)

Decay according to J=0 phase space

Low Mass Central Hadronic State Analysis $M_{\pi+\pi-}$ for $\sqrt{s} = 900$ GeV and 1960 GeV

Mass resolution $\sim 10-20 \text{ MeV/c}^2$.

Low Mass Central Hadronic State Analysis $M_{\pi+\pi-}$ for $\sqrt{s} = 900$ GeV and 1960 GeV

Low Mass Central Hadronic State Analysis $M_{\pi+\pi-}$ for 1960 GeV

intial acceptance correction based on MC simulation only

Conclusions

- We have measured $\pi^+\pi^-$ pairs between large rapidity gaps at the Tevatron, which should be dominated by double pomeron exchange. The background from K⁺K⁻ is small.
- We do not see a $\rho(770)$, confirming that photoproduction and ρ -exchange, are negligible.
- This is the only measurement from the Tevatron, and has much higher statistics than preliminary data from the LHC experiments.
- The mass spectra show several structures:
 - Broad continuum below 1 GeV/c²,
 - Sharp drop at 1 GeV/c²
 - Resonant enhancement around $1.0 1.5 \text{ GeV/c}^2$.
- The s-dependence is mass dependent.
- We plan to do a partial wave analysis to distinguish different spin states.

Thank you

Backup slides

χ_c searching

$$X_c$$
 (cc) → J/ψ + γ → μ⁺ μ⁻ γ

• a cross section

dσ/dy|_{y=0} = 76±10(stat)±10(syst) nb (7.6 × 10⁻³² cm²)

• We are looking for hadronic decays which will resolve the J=0,1,2 states.

arXiv:1103.5642 Szczurek et al

χ_{c} searching

State	$\chi_{c0}(3415)$	$\chi_{c1}(3511)$	$\chi_{c2}(3556)$
$I^G J^{PC}$	0+0++	0+1++	0+2++
Mass(MeV):	3414.76 ± 0.35	$3510.66 {\pm} 0.07$	$3556.20{\pm}0.09$
Width (MeV):	$10.4{\pm}0.7$	$0.89 {\pm} 0.05$	$2.06 {\pm} 0.12$
BF(Channel)			
$J/\psi + \gamma$	1.16 ± 0.08	35.6 ± 1.9	20.2 ± 1.0
Above with $J/\psi \to \mu^+\mu^-$	0.077	0.021	0.012
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	2.27 ± 0.19	$0.76 {\pm} 0.26$	1.11 ± 0.11
$\pi^{+}\pi^{-}K^{+}K^{-}$	$1.80 {\pm} 0.15$	$0.45 {\pm} 0.10$	0.92 ± 0.11
$3(\pi^{+}\pi^{-})$	$1.20{\pm}0.18$	$0.58 {\pm} 0.14$	$0.86 {\pm} 0.18$
$\pi^+\pi^-$	$0.56 {\pm} 0.03$	< 0.1	$0.159 {\pm} 0.009$
$\pi^{+}\pi^{-}K^{0}_{s}K^{0}_{s}$	$0.58 {\pm} 0.11$	< 0.1	$0.92 {\pm} 0.11$
Above with $K_S^0 \to \pi^+ \pi^-$	0.27 ± 0.05	< 0.1	$0.43 {\pm} 0.05$
$K^+K^-K^+K^-$	0.28 ± 0.03	$0.06 {\pm} 0.01$	$0.18 {\pm} 0.02$
$\pi^+\pi^-p\bar{p}$	$0.21 {\pm} 0.07$	< 0.1	$0.13 {\pm} 0.03$
Total %	7.2	1.9	4.7

$\chi_{_{\rm c}}$ searching

- χ_{c} has as the same quantum numbers as the Higgs (apart from its strong interactions).
- It is produced the same way but with a c-loop replacing the t-loop.
- It is a good control of the theoretical calculations.

